ITSF 2009 ROME

SYNCHRONISATION SOURCES FOR TELECOMMUNICATION NETWORKS GENERAL OVERVIEW

Hartmut Roth General Manager Symmetricom GmbH

What Is A Sync Source

Global Navigation Satellite Systems Atomic Clocks Sync Source Performance in Perspective Next Generation Sync Sources Conclusions

Sync Sources are typically Primary Reference Clocks (PRC's) and must:

- Provide a Stratum 1 reference signal to other clocks within a network.
- Serve as a master clock for a network, network section, office or network element.
- Accurate to 1 part in 10¹¹ (1x10⁻¹¹) or better with <u>verification to Universal</u> <u>Coordinated Time</u> (UTC).

ITU-T G.811 / G.803

Long term frequency accuracy better than 1 x 10⁻¹¹

Phase discontinuity better than 1/8 UI (64ns at 2048 kHz)

1 Frame slip in 72 days

3x PRS (< 10⁻¹¹)

Clock Source Overview

What Is A Sync Source

Global Navigation Satellite Systems

Atomic Clocks

Sync Source Performance in Perspective

Next Generation Sync Sources

Global Navigation Satellite System

GNSS	GPS	GLONASS	GALILEO	COMPASS (Beidou2)
Country		RECONAGO	eu GALILEO	*:
Satellites + Spare (Plan)	27 + 3 (1993)	21 + 3 (2012)	26 + 4 (201x)	30 + 5 GEO (2015)
Satellites in Constellation	31 (2009)	19 (2009) 24 (2012) 3Y	2 (2009) 4 (2011) 2Y 18 (2013) 4Y	2(2009) 12 (2011) 2Y 30 (2015) 6Y
Orbital height	20180 km	19100 km	23222 km	21500 km
Orbital period	11:58 h	11:15 h	14.05 h	12:35 h
System Control	Military	Military	Civil	Military
Timing Services	Yes	Yes	Yes	Yes
Clocks	Cs, Rb	Cs	PHM, Rb	Rb
TimeScale	TAI-19	UTC-3 hours	TAI	
Time Offset transmission	GGTO GPS/Galileo Time Offset		GGTO GPS/Galileo Time Offset	
Open service / 95%	100 ns	100 ns	30ns	50ns
Open service / 95%	28m		35m	50m

RNSS Regional Navigation Satellite Systems: QZSS (Japan), IRNSS (India) and Beidou1 (China)

GNSS Time & Frequency System

Pro's: - low cost

- high quality PRS, if stable internal Oscillator used
- provides frequency, time and phase !

Con's: - off air system, need to receive satellite information

- outdoor antenna installation required (may be expensive)
- lightning issues / protection
- system errors may cause large time offsets RAIM Receiver Autonomous Integrity Monitoring doesn't prevent for all errors !
- Jamming

What Is A Sync Source

Global Navigation Satellite Systems

Atomic Clocks

Sync Source Performance in Perspective

Next Generation Sync Sources

Cesium atomic clock autonomous PRS

Rubidium Atomic Clocks Almost a Primary Reference Source

- first atomic clock in space
- meets lifetime mobile basestation holdover
- perfect Osc. inside GNSS & SSU systems

Pro's: - small, light, low cost, low power atomic clock

- fast warm up (7 minutes)
- excellent retracibility
- unlimited lifetime (physics doesn't limit lifetime)
- self controlled, alarm indication
- 3-6 weeks network holdover
- very good short term stability
- Con's: doesn't meet PRS stability specification
 - Rubidium typical frequency aging of 1 to 5e-11/month
 - initial factory calibration / aging correction required

Other Atomic Clocks

Symmetricom

Active Hydrogen Maser (AHM)

- Uses intrinsic properties of the hydrogen atom.
- Best short term frequency stability
- Frequency stability is ~40X superior to cesium
- Relatively large, complex and expensive
- Used for maximum stability (Master Ground Stations for GNSS, National standards, radio ground stations, and very long baseline interferrometry).

Passive Hydrogen Maser (PHM)

- Uses intrinsic properties of the hydrogen atom.
- The cavity is fed by an external 1420 MHz frequency (passive vs. active) that is tuned to produce the maximum output in the cavity.
- Frequency stability comparable to lower Cesium
- H₂ replenishment after 4-6 years.
- Passive Maser show frequency aging behavior, therefore is not a good standalone PRS

What Is A Sync Source

Global Navigation Satellite Systems

Atomic Clocks

Sync Source Performance in Perspective

Next Generation Sync Sources

Oscillator Stability versus GPS

Observation period in seconds

GPS PRC stability with SA on / off

What Is A Sync Source

Global Navigation Satellite Systems

Atomic Clocks

Sync Source Performance in Perspective

Next Generation Sync Sources

NGN PRS Sync Source

Sync Sources in the NGN Network

Live deployed network in Europe

- Sync was tested over Packet-over-SDH, 2 weeks
- Moderately loaded network ring (7 hops in one direction, 15 hops in the other)
- Meeting G.823 sync mask + 1ppb with large margin

What Is A Sync Source Global Navigation Satellite Systems Atomic Clocks Sync Source Performance in Perspective Next Generation Sync Sources

Conclusions

Cesium

- Until mid 90s Cesium was the choice as PRS
- Today Tier 1 and national operators use Cs as PRS for strategic / political reasons

GPS

- since beginning 90s continuously stable open service, the last years w/o SA
- deregulated telecom market generated high demand on PRS's, due cost reasons GPS disciplined PRS became very popular !
- By now the most deployed PRS in Telecom Networks (at the beginning NO trust in GPS, today too much trust !!)
- GNSS
 - GPSIII, Glonass, Galileo, Compass provide many Satellites to choose from
 - new signals, more accuracy, integrity information, higher signal strength
 - interoperability

Interoperable multi GNSS Receiver will become the ultimate PRS Sync Source

Timing protocols like PTP will provide virtual sync sources throughout the IP NGN

Hartmut Roth hroth@symmetricom.com

Symmetricom

2300 Orchard Parkway San Jose, California, 95131 United States of America emeasales@symmetricom.com

www.symmetricom.com

Symmetricom GmbH

Altlaufstrasse 25 85635 Höhenkirchen (Munich) Germany emeasales@symmetricom.com www.symmetricom.com