
Synchronization of Television, Audio and 
Moving Pictures in a Digital Age

Tim Frost,

Symmetricom Inc.,

tfrost@symmetricom.com

ITSF 2009



2

Contents

� Synchronization Requirements in a Digital TV Studio

� SMPTE/EBU Task Force Proposal

� Network Asymmetry and Time Distribution

� Achievable Performance

� Conclusions and Deployment Recommendations



Synchronization Requirements in a Digital TV Studio
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Existing Synchronization Solution

� Synchronization split into two parts:
� Time labelling – identifying and aligning media excerpts for editing 

and post-production

� Signal alignment – for seamless video and audio mixing

� Time Labelling
� Current solution is defined in SMPTE 12M timecode (30 years old)

� Identifies individual frames

� Doesn’t support frame rates greater than 30Hz

� Doesn’t align well with other media (e.g. audio)

� Only supports 24 hours of continuous operation

� Signal Alignment
� Primarily based on a “black-burst” stream – a video stream 

containing solely the colour black

� Supports alignment of analogue composite video to within 0.5ns, 
necessary to align phase of colour sub-carrier

� Requires dedicated cabling infrastructure and careful equalization 
to achieve the required performance



5

SMPTE/EBU Task Force

� SMPTE and EBU created a joint task force to design a new 
synchronization/labelling scheme for a digital studio

� Accuracy requirements:
� Timing accuracy (jitter and wander) ±1µs

between any two slave devices (±0.1µs preferred)

� Frequency accuracy ±0.225ppm

� Frequency drift ±0.0226ppm/s

� Other goals:
� Includes sufficient information to allow generation of any current 

(and future) video and audio signal, synchronized to the reference

� Provides time-of-day and date information, including indication of 
local timezone and daylight savings time

� Runs over the existing Ethernet network interface 
(i.e. no new cabling infrastructure required)

� Slave implementation as simple and cheap as possible

� Time/frequency acquisition to be within a few seconds



Task Force Proposal
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Common Synchronization Interface

� A common set of information, allowing:

� Simple reconstruction of video and audio signals

� Creation of acquisition timestamps for labelling

� Based on an “epoch”, when all video and audio 
signals are deemed to have zero phase

� Includes:

� Time since epoch (seconds and fractional seconds), 
allowing signals to be created with correct phase

� Control data, e.g. flags, version, lock status, datum type

� Leap seconds, timezone and DST information



9

Datum Reference

� CSI data is de-coupled from Datum reference

� CSI is valid at a given datum point

– Type 0: next second boundary of network time reference

– Type 1: specified future time given by network time reference

– Type 2: defined reference point in a black-burst reference signal

� Not necessarily locked to time reference

� Allows locking to legacy, free-running video references

� Allows distribution of multiple independent references around the 
studio

� Datum reference is distributed independently to the CSI

� Recommendation is to use IEEE1588 over the Ethernet control 
network, although other methods are allowed

� Use of IEEE1588 means both datum and CSI can be distributed 
over same network infrastructure



Network Asymmetry and Time Distribution
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Reminder: Asymmetry

• Master frequency determined by 
comparison of timestamps

• e.g. comparison of t1 to t2 over multiple 
sync messages, or t3 to t4 in delay_req

messages

• Time offset calculation requires all four 
timestamps:

• Slave time offset = (t2 – t1) - (t4 – t3)

• assumes symmetrical delays 

(i.e. the forward path delay is equal to 

the reverse path delay)

• Accurate time depends on a 
symmetrical network 

• Time error = fwd. delay – rev. delay

2
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PTP Grand 
Master 

Routing Variances

Forward path

Reverse path

� Forward and reverse paths are routed independently in IP 
routing protocols, potentially causing asymmetry

� Potential for asymmetry worse in larger networks

� Use managed networks with symmetrical paths

PTP Slave 
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Data Rate Steps

� Network elements (e.g. switches, routers) generally read in 
the entire packet before forwarding

� Error check not complete until last bit received

� Takes longer on a slow link than on a fast link

� Delay difference on step from 1Gb/s to 100Mb/s = 6.48µs

� Avoid data rate steps where possible, or explicitly correct 
for known data rate steps

1Gb/s Ethernet 100Mb/s Ethernet

Read-in time of a 90 byte packet 
on a 1Gb/s network = 0.72µs

Read-in time of a 90 byte packet 
on a 100Mb/s network = 7.2µs
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Link Asymmetry 

� Asymmetric link technology

� e.g. xDSL, GPON, WiFi

� Downstream delay usually shorter than upstream delay

� PHY Layer Component Forwarding Delays

� Component delays (e.g. PHY devices) may not be the same in the 
forward and reverse direction

� This may be true particularly in cases where equipment or 
components come from different vendors

� Differential Cable Delays

� In twisted pair cables, each pair can be a different length

� Delay skew between pairs can be as much as 50ns/100m

� Use matched cables for controlled delay skew

� Asymmetric link delays are not solved by peer-to-peer 
transparent clocks



Achievable Performance
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Test Network Diagram

16

• No transparent clock switches

• PTP traffic set to highest priority
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Baseline Test: ITU-T G.8261 Test Case 13
Test Description Continued

� Measurement:

� Compare phase error between 1pps output of slave, 
and 1pps output of master 
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Figure VI.11/G.8261 - Sudden Network disturbance load Modulation for 2-way
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Test Results: Phase Deviation 
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Test Results: MTIE
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Conclusions and Deployment Recommendations
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Conclusions

� ±250ns time accuracy is achievable

� Avoid data-rate steps 

� e.g. use all 1Gbit/s or 10Gbit/s networks

� For accurate timing, faster is better!

� Manage the network for symmetrical paths

� Avoid inherently asymmetric link technology 

� e.g. ADSL, potentially some wireless technology

� Native Ethernet links are good

� Avoid mixing switch types to minimise component asymmetry

� Keep cables short to avoid differential cable delays

� Use matched cables if available 

� Transparent clocks may aid performance in large networks

� Don’t solve the problem of asymmetric link delays



Thank you for listening!
Any questions?


