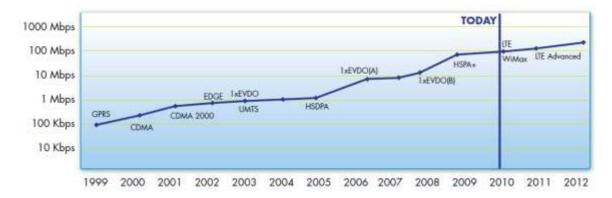
# Leader in Converged IP Testing

TOUR

RESS

# **Testing 'time' for Carrier Ethernet**

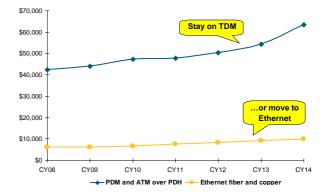

Ixia's Timing over Packet Test Solution helps carriers lower costs and scale wireless services

# Wireless Bandwidth Trends


10x growth in cellular data speeds every 3-5 years.

Data traffic expected to hit 1.8 exabytes per month by 2017.

Source: Reportlink, September 2009

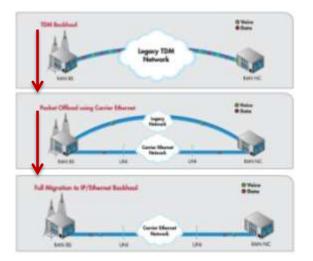



# TDM Backhault Bottleneck for Wireless Growth

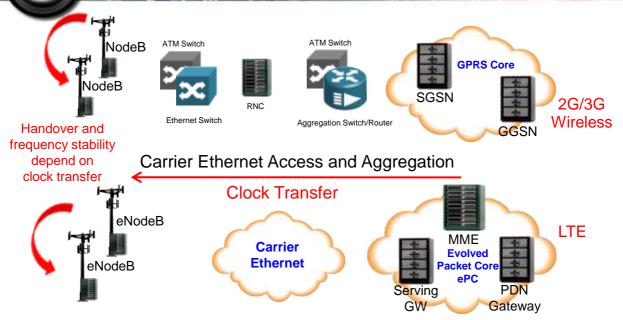


# Market Drivers: Carrier Ethernet (CE) Mobile Backhaul

- Carrier Ethernet offers an attractive alterative to TDM mobile backhaul
  - Lower cost per connection
  - Granular bandwidth
  - Well standardized
  - Global support
  - Broad acceptance
  - Proven momentum
  - Higher speed Ethernet




#### PDH vs Ethernet: Annual Mobile Backhaul Service Charges per Connection


Source: Mobile Backhaul Equipment and Services, Infonetics, July 16th 2009

# Growth: CE Mobile Backhaul

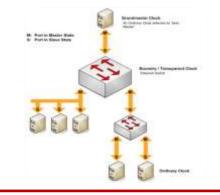
- 100% of global Service Providers claim to be deploying IP/Ethernet backhaul in 2010 (Infonetics)
  - Most current deployments are 'hybrid' using retaining TDM for voice due to clock synchronization requirements
  - Unlike SONET/SDH, Ethernet has no native clock transfer mechanism
- 65% of service providers plan to move to a single Ethernet mobile backhaul for carrying all traffic
  - First require assurance that timing over packet (ToP) technologies meet clock accuracy and network synchronization requirements



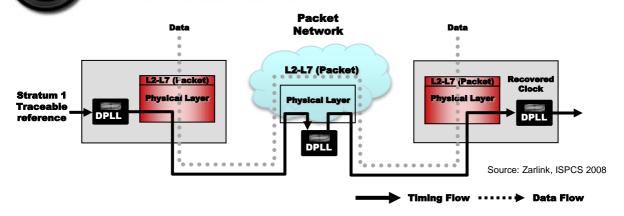
# Timing over Packet Technologies for Ethernet Mobile Backhaul



- Synch Ethernet distributes a clock signal for frequency synchronization
- IEEE 1588v2 enables both frequency, phase and time-of-day synchronization
- Improve clock accuracy and stability over Ethernet from 100ppm to +-4.6ppm


# Synchronous Ethernet vs. IEEE 1588

### Synchronous Ethernet (SyncE)


- Physical Layer
- Synchronizes only frequency
- Not impacted by network load
- Every switch/router path must support SyncE
- Synchronization Status Message (SSM) carries clock quality level (1pps)
- Network devices must be able to recognize, select, and propagate highest quality clock

### IEEE 1588v2 Precision Time Protocol (PTPv2)

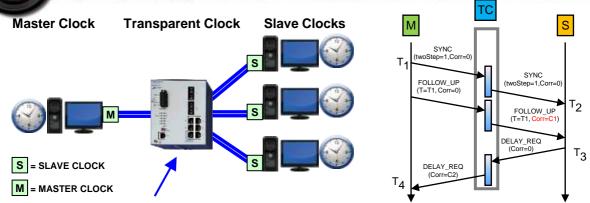
- Protocol Layer
- Synchronizes frequency and time-of-day
- Subject to network load
- 'Version 2" introduces Transparent Clocks and Boundary Clocks



# SyncE Technology - PHY layer

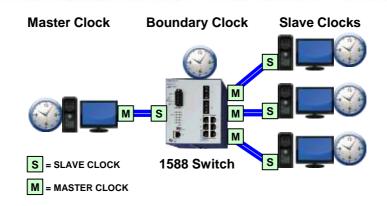


- Exactly the same as 10/100Mbps /1G Ethernet, with the clock stability increased from 100ppm to 4.6ppm
- Uses the PHY clock
  - · Generates the clock signal from the "bit stream"
  - Similar to traditional SONET/SDH/PDH PLLs
  - · Requires new hardware
  - Each node in the packet network recovers the clock


# SyncE Technology - ESMC

### Ethernet Synchronization Messaging Channel (ESMC)

- Simple, stateless, unidirectional protocol for communicating the current reference-clock quality between nodes
- Modelled on SONET/SDH S1 Byte
- Only one message type:
  - SSM (Synchronization Status Message)
  - Sent at 1pps
  - One significant field: QL (clock Quality Level)


|                                 | Clock | Message | SSM code |
|---------------------------------|-------|---------|----------|
| E1 quality level<br>(2048 kb/s) | EEC1  | QL-EEC1 | 1011     |
| T1 quality level<br>(1544 kb/s) | EEC2  | QL-EEC2 | 1010     |

# IEEE 1588v2 Transparent Clocks



- Ethernet switches between the Master and Slave introduce asymmetric and variable packet delays, which impair accuracy!
- Transparent Clocks (TCs) are switches that insert a Correction Factor into PTPv2 packets
- This mitigates the effect of the switch's own packet residence time (forwarding delay)
- However
  - Correction factor errors are real
  - May impair slave clock tracking
  - · Ixia measures CF error and latency asymmetry in real time

# IEEE 1588v2 Boundary Clocks



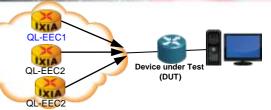
- Boundary Clocks (BCs) act as slaves to one domain, and masters to other domains
- This scales better in large systems and also mitigates the residence time problem
- However
  - Scalability is a huge challenge when there are many slaves and other control-plane traffic
  - Best Master Clock Selection can go wrong, leaving slaves in disagreement about the time

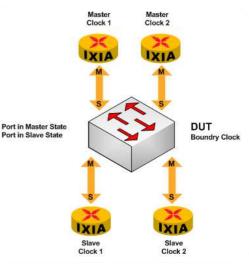
# **Festing Timing over Packet**

#### Conformance and functional validation

- Verify correct protocol exchange
- Validate best clock selection
- Ensure synchronization with expected results

#### Multi-vendor Interoperability


 Ensure different vendor implementations can interwork


### Scalability & Stress Tests

- Test capability and capacity of a boundary clock or PTP enabled network in achieving synchronization across many nodes (1000's)
- Test device or networks under high data and message rates

### Multi-dimensional Testing

- Simulate real-world mobile backhaul network conditions (mixture of device types, traffic and protocols) in a controlled lab environment
- Verify synchronization and multi-traffic traffic forwarding performance in the context of broader network protocols and traffic





# **Benefits of Test**

- Cost-effective alternative to building large test beds of actual equipment.
  - Test each chip, device or multi-device system under real-world conditions and 'at scale', in a reliable and repeatable fashion
- Used to evaluate and compare different vendor equipment for network upgrade
- Evaluate the tradeoffs between timing performance and scalability
  - Critical for network capacity planning and service verification
- Reduce risk of missed call handovers and network downtime
- Accelerate the deployment of CE mobile backhaul

# For more information

- Ixia Carrier Ethernet Solution Page (brochures, whitepapers, posters...)
  www.ixiacom.com/solutions/testing carrier ethernet
- Ixia Black Books www.ixiacom.com/blackbook
- Webinar: Testing Challenges with Mobile Backhaul http://downloads.ixiacom.com/multimedia/WEBINARS/Mobile Backhaul Webinar/mbh-ixia.html
- European Advanced Network Test Center (EANTC) <u>www.eantc.com</u>

Metro Ethernet Forum <u>http://netevents.tv/output/meftv/webinar/register/register.aspx?id=2</u>

# **THANK YOU**

Leader in Converged IP Teating