

Double Migration

of Packet Clocks

Kenneth Hann Principal Engineer

Artwork: Tanja Hann

Packet Clocks...

the first migration

Packet Clocks...

the first migration

Packet Clocks...

the first migration

Agenda

From "here"... Timely progress Supporting PTP migration

4. To Phase (eventually)

5. Conclusions

1. From "here":

- mobile FDD
- Ethernet backhaul
- that "last E1"

From Legacy Sync ...

to SyncE

From Legacy Sync ...

to PTP

From Legacy Sync ...

to Hybrid networks

2. Timely Progress

- Network limits G.8261.1
- Packet Equipment Clock model G.8263
- PEC "knowledge base" G.8260

Output limits for a packet Clock (frequency / FDD applications)

G.8261.1 Sneak Preview

2G / 3G / LTE mobile requires 50ppb frequency stability

Factors impacting Packet clock "performance":

- Local oscillator stability
- Accuracy of timestamps
- Sync rate
- •PDV characteristics of the network
- PDV filtering in the packet clock 2011
- Packet selection algorithm
- Number of synchronization flows in Ensemble
- Ensemble combining algorithm

2010

Adaptive clock recovery algorithm

None Some of above being standardized

Model of a frequency PEC (G.8263)

for worst case input

Packet Equipment Clock model Tellabs – not just "secret plans and clever tricks"

3. Supporting PTP migration (Frequency FDD)

- PDV metrics
- Clock output monitoring
- Live network deployments

Monitoring of the Synchronization network

- Mobile networks:
 - need synchronization <50ppb
 - May be >10,000 nodes
 - Some must migrate to IEEE1588

- PECs viewed with suspicion
 - Are fairly new
 - Telecom standards still evolving
 - Performance partially dependent on network conditions

Operators need to be conservative

Packet Metrics – work in progress ...

	Forward pa	ath:										
	PDV [us]	P1	P2	PЗ	P4	P5	P6	P7	P8	P9	P10	
	0-1	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
60	1-2										8\$	
	2-5	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
	5-10	0%	0%	0%	0%	1120		0%	h.94	0%	0%	
	10-20	0%	0%	0%	0% /	A la	IIGE	l Cup	NUL	0%	0%	
	20-50	9%	8%	7\$	9%	8%	8%	7%	7%	8%	6%	
	50-100	57%	55%	58%	56%	LAV	54	56%	58th	KQ	57%	
50 + +	100-200	32%	35%	34%		Flat	U-t U		EHU	let.	35%	
	200-500	0%	0%	0%	0%	O 🗧	0%	0%	<mark>.</mark> %	0%	0%	
	500-1000	0%	0%	0%	0%	N						
	1000-2000	0%	0%	0%	0%	Nee			o de	o lo		-0
	2000-5000	0%	0%	0%	0%	0%	0%	0%	0%	Ō%	0%	—
	5000-10000	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
40	>10000											
	max delay	181	184	173	184	177	182	181	190	176	189	
	min DF-RMS	7.70	7.51	8.27	7.09	7.53	7.82	8.28	7.62	7.66	8.31	
	max DF-RMS	8.63	9.19	9.66	8.63	8.87	9.02	8.82	8.55	8.66	8.94	
	Reverse path	h:					T					
30	PDV [us]	- P1	P2	- F3-		P5			P8	P9	P10	
	0-1	4%	2%	1%	2*	2%	5%	5%	3%	4%	4%	
	1-2	4%	2%	4*	31	2*	4%	5%	3%	4%	4%	
	2-5	13%	7%	134	12 %	11%	10%	12%	12%	13%	12%	
	5-10	24%	18%	19%	16%	17%	15:	15%	22%	23%	22%	
	10-20	41%	27%	47%	27*	27%	28%	35%	41%	41%	44%	
20	20-50	11*	41%	9%	37%	37%	34%	25%	14%	11%	12%	
	50-100	0%	0%	0%	0%	0%	0%	0%	1%	0%	0%	
	100-200	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
	200-500	U%	U%	U%	0%	U%	U%	U%	U%	U%	U%	
	500-1000		U%	0%	0%	0%	0%	U%	0%	U% 0^	U% ©^	
10	1000-2000	0%	0%	U%	08	0%	0*	U% 0^	0%	U% 0^	U% 0^	
	2000-3000	03	03	03	03	03	 _^*	0%	03	 0°	0%	
	5000-10000	U%	U%	U%		0%	0%	U% ©^	0%	U% 0^	U% 0^	
	10000	0%	0%	0%	U*	U%	0*	0*	0%	U*	U%	
•	max delay	86	63	0.05	53	62	0 00		75	73	76	
	min DF-RMS	0.29	0.33	0.5	0.30	0.29	0.27	0.27	0.28	0.28	0.32	
	max Dr-RMS	0.34	0.38	0.38	0.35	0.33	0.33	0.27	0.31	0.32	0.35	
	#4: 10.31.103	#2: 10.31.103.1							¹⁰⁰⁰ 10/25/10			
1	1 10				100							

"tellabs"

IEEE1588 Clock Monitoring

- True PEC output monitoring (Built-in wander meter)
- Needs a reference, but...
- Fortunately legacy provides the reference (temporarily).

Which of my 10,000 nodes should I monitor?

tellabs'

Why not monitor all 10,000?

Network management Supports 1588 clock monitoring

- Select reference (for Migration use "last E1").
- Configure MTIE mask and monitoring period

Synchronization NE8040/	U1							
Location								
Station Clocks Fallback Lists IEEE1	IS88 Slave IEEE1588 Monitoring							
Monitoring Enabled								
Monitored Virtual SCI:	Clock Ensemble							
Monitoring Period:	60	min						
MTIE Reference Mask:	G.8261.1							
Reference Clock:	- U1/M0/IF1							
Get TIE History Data from:	Last 24h 💌							
Get TIE and MTIE Graphs								

- Set Fall Back List priorities (determines node clock)
 - E.g. Initially E1 then switch to PTP

Automate configuration using tools; rules and macros

Large scale evaluation of IEEE1588 Tetellabs performance (TDM to IEEE1588 migration)

Work flow:

- 1. Configure clock monitoring (Node clock = E1)
- 2. Periodically during migration
 - filter faults to show synchronization "trouble spots"
 - launch clock monitoring on selected node
 - optionally "tighten MTIE mask" for scenarios
- 3. Preference PTP over E1 (Node clock = PTP)

(clock selection process does the "switchover)

4. Decommission the "last E1" from nodes

Perhaps leave a few measurements points...

4. Future Directions (phase synchronization TDD/LTE adv.)

Phase requirements (new network)
Telecoms boundary clock
Network phase & service phase

Telecom Phase and frequency solutions "Itelabs are very different...

Most kind Telecom, but Ordinary clocks don't surf PDV.

... but same management (SSM) for both

Prepare for the "phase migration"

- Require phase synchronization
- 1us or better accuracy
- GPS extension using IEEE1588
 - Standardization work ongoing
 - Nodes "T-BC Hardware Ready"

Initially islands around GPS

Synchronization Topology *Provisioned, uses "SSM" for ring protection*

- Migration to support phase means
 - Upgrading PRC to PRTC
 - Upgrading EEC's to T-BC's

Network timing flow -----> Network phase flow ----->

tellahs

Topology management is the same for phase

Service phase and Network Phase

E.g. When a carrier has several mobile customers...

5. Conclusions

- Everyone is leaving "Legacy Land" on...
 - SyncE; PTP; Hybrid (or anything that floats)
- Packet Equipment clocks ready for <u>Ethernet</u> prime-time
- PEC output monitoring gives a confidence boost
 - Last service of the "Last E1"
 - Large-scale, live network, field monitoring is available
- Prepare for 2nd migration
 - Phase support needs new clocks (Nodes "HW phase ready")

"SSM" and the sync hierarchy remain the same!

Thank you!

Enabling the mobile Internet

A PEC's got to know it's limitations

