
© 2008 Codenomicon. all rights reserved. © 2011 Codenomicon. All rights reserved.

Finding Critical Security Problems with Fuzzing
ITSF 2011, Nov 1-3, 2011

Heikki Kortti, Senior Security Specialist, Codenomicon

© 2008 Codenomicon. all rights reserved. © 2011 Codenomicon. All rights reserved.

Fuzzing, Robustness Testing,
Negative Testing

• Hackers are using fuzzing to find vulnerabilities
• Found vulnerabilities are developed to exploits or used to

launch DoS attacks

• As mitigation, companies have started to integrate the
same security techniques
• Fuzzing tools to automate security testing

• Hardening devices and networks against attacks

• Not just against hacking
• General quality improvement and preparing for unexpected

• Any software that processes inputs can be fuzzed:
network interfaces, device drivers, user interface….

© 2008 Codenomicon. all rights reserved. © 2011 Codenomicon. All rights reserved.

From a student course
assignment…

• First documented application of fuzzing was Barton
Miller’s course assignment for students in 80’s

• Students were asked to write programs to fuzz test
Unix command line applications

• Random inputs were fed to applications, which
exhibited previously hard-to-find bugs

© 2008 Codenomicon. all rights reserved. © 2011 Codenomicon. All rights reserved.

Fuzzing happens in the
verification phase of the SDL

...to a standard corporate secure
development practice

© 2008 Codenomicon. all rights reserved. © 2011 Codenomicon. All rights reserved.

“Fuzz testing or fuzzing is a software testing
technique that provides random data ("fuzz") to the
inputs of a program. If the program fails (for
example, by crashing, or by failing built-in code
assertions), the defects can be noted.”
 - http://en.wikipedia.org/wiki/Fuzz_testing

Original fuzzing was

Entirely random [input to DUT]

Simple pass/fail criteria: SW crash or no crash

Easy to automate due to simplicity

The Original Definition

© 2008 Codenomicon. all rights reserved. © 2011 Codenomicon. All rights reserved.

• From random to systematic and targeted
• In fact, most fuzzing today is based on sending

systematically broken (rarely random) inputs to a software,
in order to crash it

• Two techniques for fuzzing:
• Mutation (non-intelligent semi-random modifications)
• Generation (intelligent and targeted model-based tests)

Next Generation Approaches

© 2008 Codenomicon. all rights reserved. © 2011 Codenomicon. All rights reserved.

Expected Results

• The purpose of fuzzing is to find flaws
• All found issues are true implementation errors (from a quality

perspective)
• Subset of found issues do have security implications
• Typically, there are very few or no false positives with fuzzing

• All “stacks” or services can be vulnerable
• Any protocol implementation can fail under negative testing
• And based on experience, most do

• Complexity level predicts amount of flaws
• The more complex the implementation, the more flaws there

will be

© 2008 Codenomicon. all rights reserved. © 2011 Codenomicon. All rights reserved.

Running Fuzz Tests

© 2008 Codenomicon. all rights reserved. © 2011 Codenomicon. All rights reserved.

VALID PACKET

SIGNALING

ATTACK PACKET

Example of a Fuzz Test Case

© 2008 Codenomicon. all rights reserved. © 2011 Codenomicon. All rights reserved.

Example of a Fuzz Test Case

© 2008 Codenomicon. all rights reserved. © 2011 Codenomicon. All rights reserved.

• Metro Ethernet is a technology operators have started
deploying relatively recently

• New technology with emerging new vendors is often prone to
security vulnerabilities

• In 2008, UK’s CPNI commissioned Codenomicon to
assess security of several Metro Ethernet switches

• http://www.cpni.gov.uk
• Several new fuzzers were developed and run against the switches
• CPNI communicated results to appropriate vendors
• Project continued in 2009-2011

Ethernet Testing

© 2008 Codenomicon. all rights reserved. © 2011 Codenomicon. All rights reserved.

• Pure L2: Ethernet, Synchronous Ethernet, BFD, CFM, E-
LMI (MEF-16), GARP/GMRP (802.1D), OAM/LFM
(802.3ah), LLDP (802.1AB), PBT/PBB-TE (802.1ah),
L2TP, LACP (802.3ad), STP (802.1D)

• Layer 3: IP, ICMP, IGMP, TCP, UDP, SCTP
• Management: SSH, Telnet, FTP, SNMP, TFTP, HTTP
• Auxiliary protocols: NTP, DHCP, DNS, PTP
• Other protocols: BGP, OSPF, RSVP, PIM, IS-IS
• Vendor-specific protocols (custom and/or proprietary)

Attack Surface Analysis for L2
Devices

© 2008 Codenomicon. all rights reserved. © 2011 Codenomicon. All rights reserved.

• Develop new fuzzing test suites for Synchronous
Ethernet and PTP

• Repeat previous L2 tests against SynchE/PTP-capable
devices and research robustness and security of these
devices specifically

• Run higher-level L3+ tests as time and device features
allow

Synchronous Ethernet & PTP
Testing Scope

© 2008 Codenomicon. all rights reserved. © 2011 Codenomicon. All rights reserved.

• Access to reference implementations during test suite
development

• Logistics with test labs, vendors and network operators
• PTP telecoms profile requirements

Challenges

© 2008 Codenomicon. all rights reserved. © 2011 Codenomicon. All rights reserved.

• Can be used to test any Synchronous Ethernet device
• ESMC messages
• QL Synchronization functions
• QL TLVs
• Extension TLVs

Synchronous Ethernet Test Suite

© 2008 Codenomicon. all rights reserved. © 2011 Codenomicon. All rights reserved.

• Can be used to test any PTP implementation
• Both “client” and “server” test suites
• PTPv1, PTPv2
• Tested messages: Announce, Sync, Follow-Up, Pdelay-

Req, Delay-Req, Management, Signaling
• Unicast and Multicast modes
• Transport over UDP/UDP6 and Ethernet

IEEE1588 PTP Test Suites

© 2008 Codenomicon. all rights reserved. © 2011 Codenomicon. All rights reserved.

• Ensure interoperability
• Start testing
• Monitor crashes and slowdowns
• Monitor other unexpected behaviour or protocol

interactions in test network with a network analyzer
• Monitor changes in timing characteristics from system

logs or external monitoring devices
• Repeat tests as required for remediation / debugging

Test Execution

© 2008 Codenomicon. all rights reserved. © 2011 Codenomicon. All rights reserved.

• All of the tested devices exhibited some failures
• Synchronous Ethernet caused mostly slowdowns, no

crashes
• PTP implementations proved surprisingly robust
• Higher-layer protocol tests demonstrated more critical

flaws
• Finding relevant R&D or security contacts within vendors

was challenging
 Except when testing was done in their premises

• “One faulty protocol is enough” - if a device can be killed
with a single broken packet, it does not matter if all of the
other protocol implementations in the device are robust

Summary of Results

© 2008 Codenomicon. all rights reserved. © 2011 Codenomicon. All rights reserved.

• Port scan crashes SUT
• SUT slows down when receiving large volume of

malformed traffic
• Crash of SUT or subsystem when receiving one or more

malformed packets

Generic Attack Scenarios

© 2008 Codenomicon. all rights reserved. © 2011 Codenomicon. All rights reserved.

• Denial-of-Service attacks against GM, slave clocks, SSUs
• Most of the attacks require IP-level or other network-level

access to target PTP interface
• Slave clock site could be compromised physically, attacker

could plant a black box that send evil packets towards GM or
other slave clocks

• Targeted malware (think Stuxnet) as an alternative
• GM DoS takes down whole network
• DoS of a remote slave clock is less critical but can be more

costly to fix
• SSU attacks require direct connection from GM
• Solid network design and incident response are crucial

PTP-Specific Attack Scenarios

© 2008 Codenomicon. all rights reserved. © 2011 Codenomicon. All rights reserved.

“Thrill to the excitement of the chase!
Stalk bugs with care, methodology,
and reason. Build traps for them.

....
Testers!

Break that software (as you must) and
drive it to the ultimate

- but don’t enjoy the programmer’s
pain.”

[from Boris Beizer]

PROACTIVE SECURITY AND ROBUSTNESS SOLUTIONS

THANK YOU – QUESTIONS?

