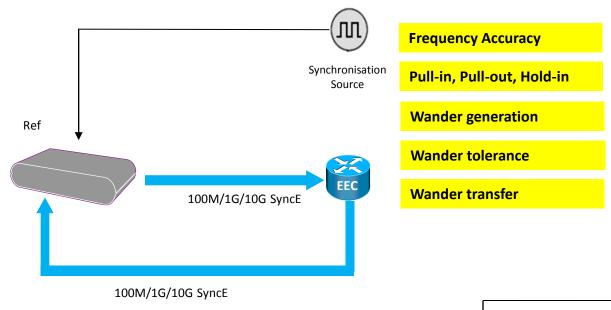


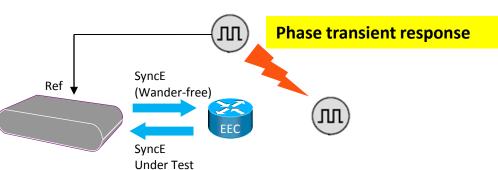
Delivery of Time & Timing using Packet Networks

Tommy Cook, CEO

Presentation overview

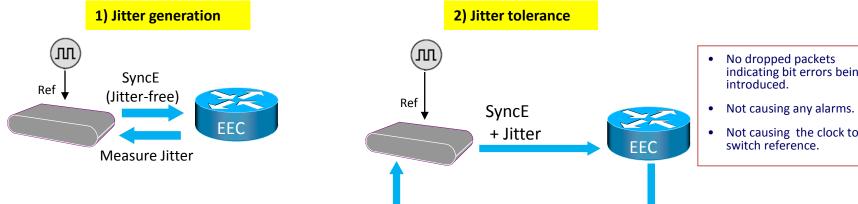
Proving performance of;


- EEC Synchronous Ethernet Devices.
- 1588v2 Devices.
 - Boundary Clocks.
 - Transparent Clocks.
 - Ordinary Clocks.
- Networks
 - Packet Network Metrics
 - Networks with slave devices (experimental results)



EEC – Synchronous Ethernet devices

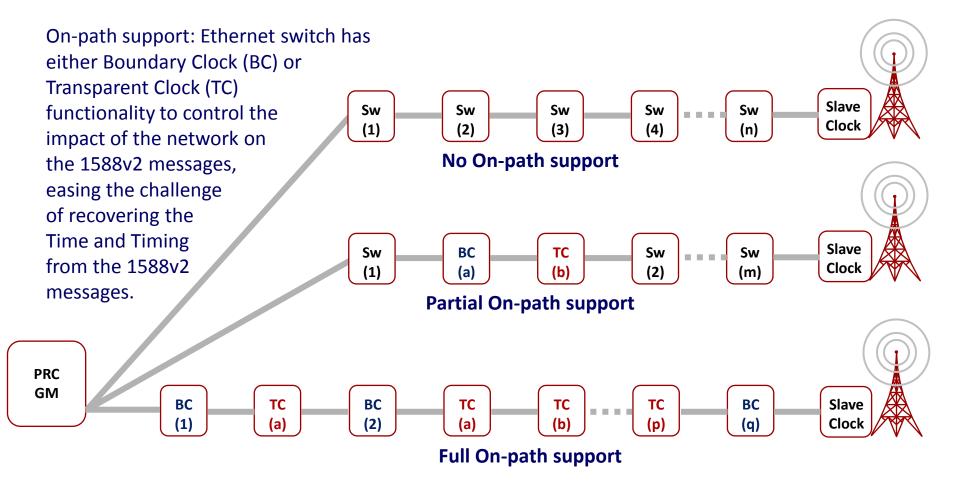
Sync-E Wander to G.8262



Sync-E Jitter to ITU-T G.8262

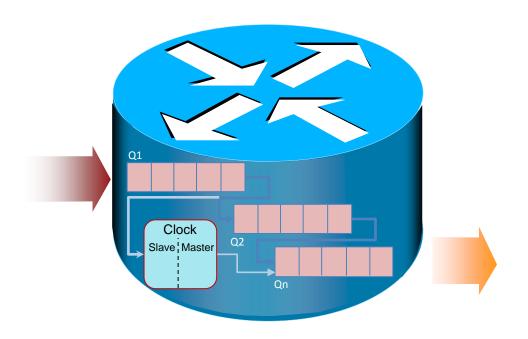
Measure Dropped Packets.

Monitor ESMC Status.


- indicating bit errors being
- Not causing the clock to

1588v2 Devices

Designing your network



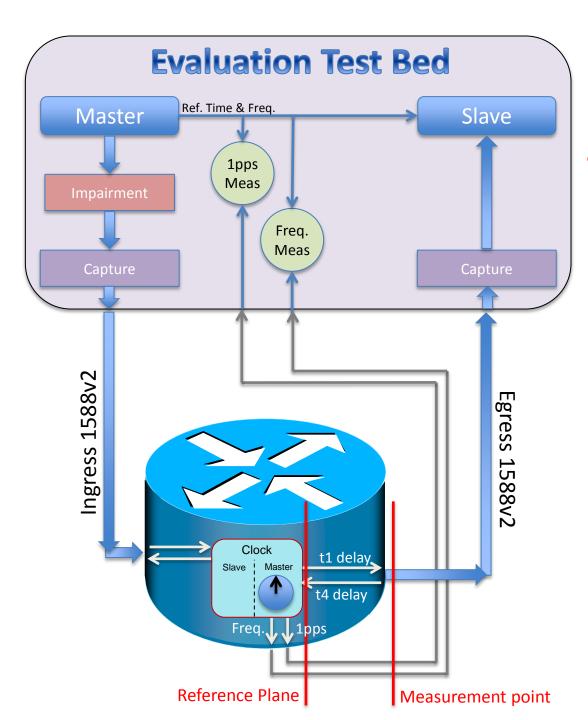
Boundary Clocks

Boundary Clock

Boundary Clocks reduce PDV accumulation by;

- Terminates the PTP flow and recovers the reference timing.
- Generate a new PTP flow using the local time reference, (which is locked to the recovered time).
- No direct transfer of PDV from input to output.

Boundary Clock is in effect a back-to-back Slave+Master.


Performance specification of a T-BC

Draft ITU-T **G.8273.2** will specify the performance of a BC. A number of sections have been proposed;

- 6. Physical Layer Performance requirements (G.8262 when SyncE supported)
- 7. Packet layer performance requirements
 - 7.1 Noise Generation
 - 7.1.1 Constant time error generation
 - 7.1.2 Time noise generation
 - 7.2 Time Noise Tolerance
 - 7.3 Time Noise Transfer
 - 7.4 Packet Layer Transient and Holdover Response

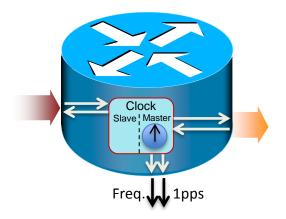
The structure in G.8273.2 is following the well established methods of specifying the performance of node clocks (e.g. in G.8262 for SyncE, etc.) but with the additions particular to the transfer of Time.

T-BC Time Error (TE)

TE: Difference between recovered time in the T-BC to the Master's Time.

- Max TE (absolute wrt ref)
- Dynamic TE, MTIE/TDEV
- **Constant TE** (absolute wrt ref)

a) Measure 1pps;

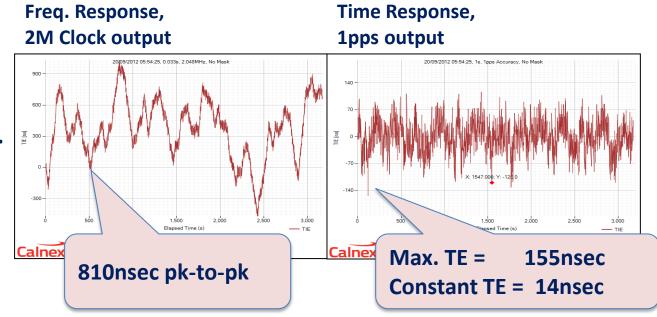

 If 1pps available, compare to 1pps from Master reference to determine accuracy.

b) Measure Egress 1588v2;

- Analysis timestamps to determine TE of T-BC.
- Need to include t1 and t4 delays to measure Time output as seen by downstream device.

T-BC test results example

Devices that utilise SyncE, it is important to verify;

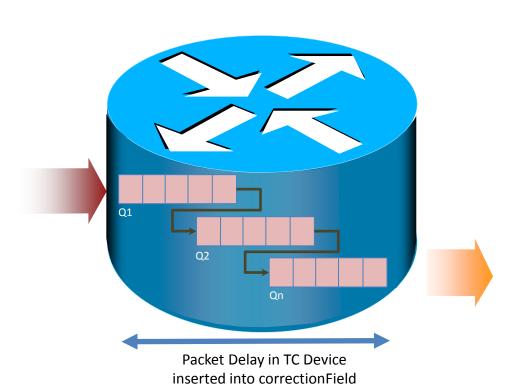

- SyncE performance to G.8262.
- Time transfer performance to G.8273.2, (under dev.).
 - As well as tolerance to 1588v2 noise, check Time performance when exposed to SyncE physical layer noise.

Stimulus;

 TDEV SyncE noise injected to ingress port.

Measurement;

- Frequency Response
- Time Response



Transparent Clocks

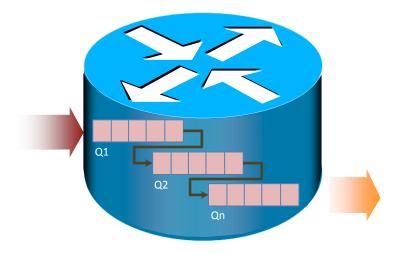
Transparent Clock

at output of Transparent Clock device

Transparent Clocks reduce PDV by;

- Calculating the time a PTP packet resides in the TC device (in nsec) and insert the value into the correctionField.
- By using the correctionField, the Slave or terminating BC can effectively remove the PDV introduced by the TC.

PTP Message Header Format							
Bits							
7	6	5	4	3	2	1	0
transportSpecific				messageType			
Reserved			versionPTP				
messageLength							
domainNumber							
Reserved							
Flags							
→ correctionField							
Reserved							


Accuracy of the CorrectionField value:

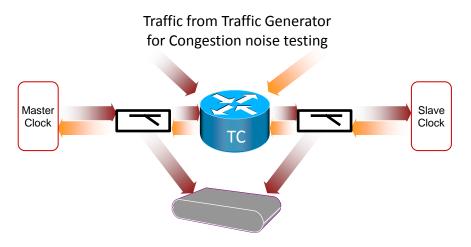
Does it reflect the actual delay experienced by the Sync & Del_Req messages?

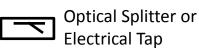
Theoretical model:

- CorrectionField precisely reflects the delay through the equipment
- Ideal case zero net PDV

Types of CorrectionField inaccuracy;

1. Variable error

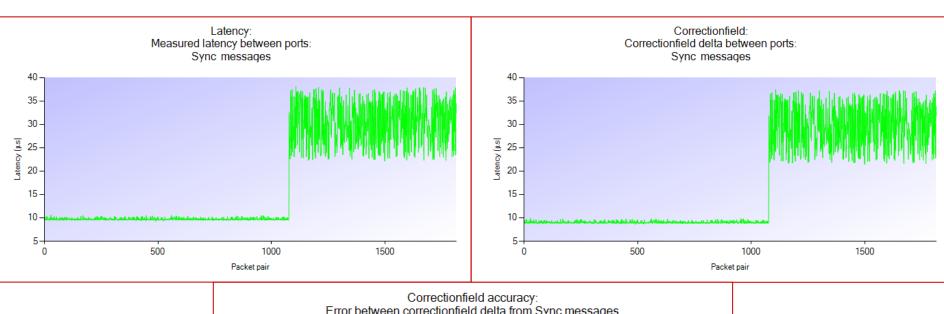

- Caused by packet-to-packet variation in CorrectionField accuracy.
- Leads to residual PDV when PTP terminated.

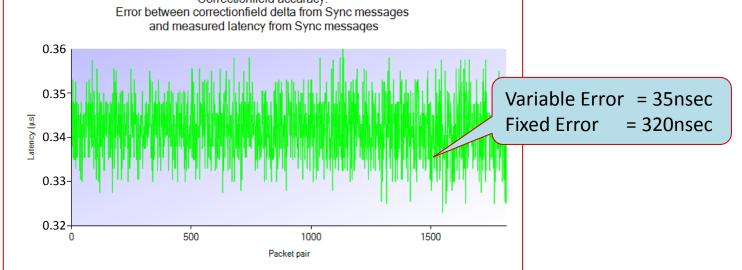

2. Fixed Error

- Caused by CorrectionField value always being greater than a fixed value.
- Results in a fixed delay being measured when PTP terminated.
- Not as issue if Fixed Error is matched in forward and reverse direction.
- Differences between forward and reverse
 Fixed Error will produce asymmetry and
 hence create a fixed Time Error.

Transparent Clock Test Plan

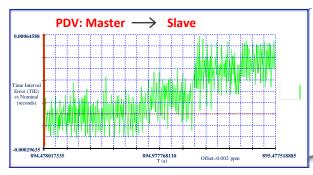
IEEE std C37.238-2011
PTP in Power Systems Applications.

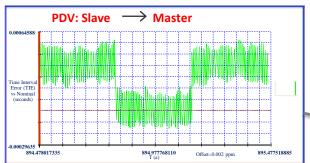

Annex A:
 TC TimeInaccuracy ≤50nsec.


Development Test Procedure to characterise actual performance

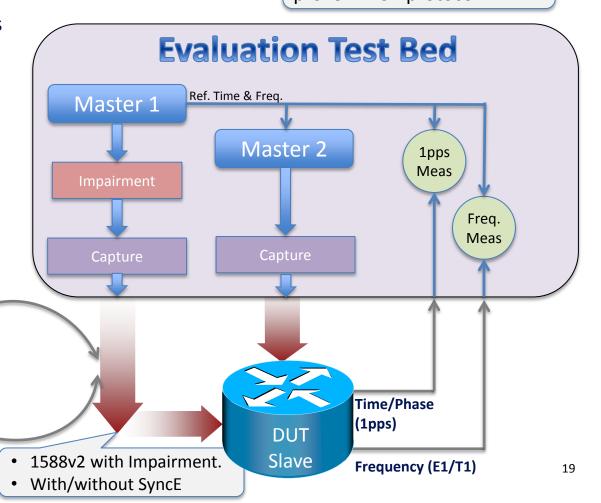
- 1. Measure the packet-by-packet latency across the TC.
- 2. Determine the change to the correctionField value for each message.
- 3. Accuracy is the difference in the actual latency compared to the change in Correctionfield value.
- Measure impact of CorrectionField on Sync PDV.
 - 1. Vary traffic packet size.
 - 2. Vary traffic priority.
 - 3. Vary traffic utilisation.
- Repeat for Sync & Del_req PDV.
 Test in 1-Step and 2-Step modes.

TC CorrectionField Accuracy example results




Ordinary Clocks

Prove performance of Slave Device

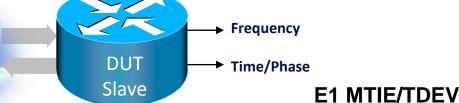


- Congestion in both directions will impact clock recovery.
- G.8261 Appendix VI Test Cases are the most widely used approach to verifying operation.

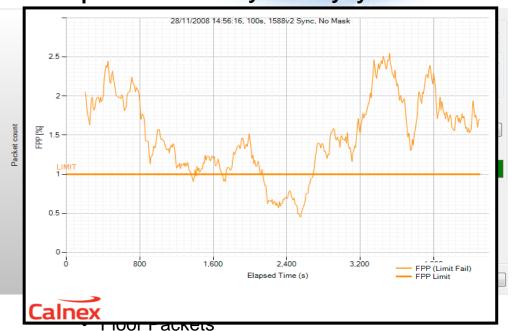
Use second PTP Master to prove BMCA protocol.

Networks

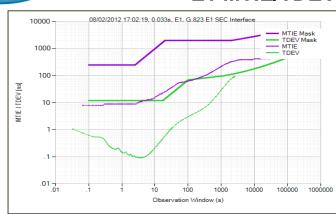
PDV Metrics


ITU-T G.8260: Appendix I defines a number of metrics that may be used for analysis of PDV.

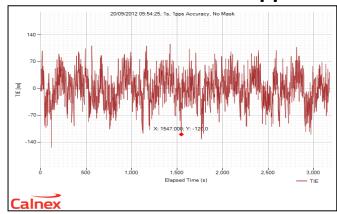
Metrics defined include;


- FPR, FPP, FPC Floor delay packet population, ratio/percentage/count.
 - FPP Limits defined in G.8261.1
 - 1% of packets within 150µsec of floor delay in every 200sec period.
 - Defined for networks transferring frequency.
 - MEF investigation the use of FPP to define SLA parameters.
- MATIE, minMATIE Maximum Average Time Interval Error
- MAFE, minMAFE Maximum Average Frequency Error
- minTDEV, PercentileTDEV, BandTDEV (TDEV Time Deviation)
- ClusterTDEV
- pktfilteredTIE, pktfilteredMTIE, pktfilteredTDEV, pktfilteredFFO

Packet Metrics, example result



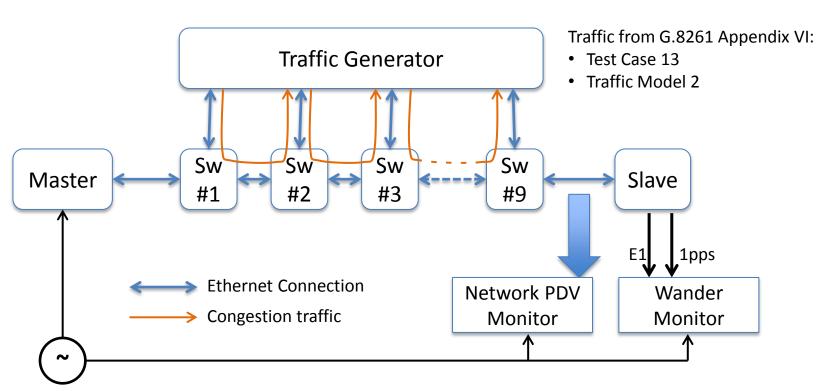
FPE PERMENTALIFFUNCTION



G. <u>226</u> of pale the continuing in 500 uses who ster.

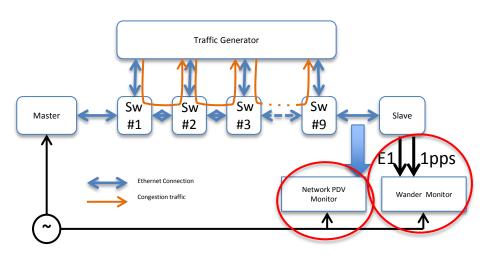
• bandina reconster bands from the band and the band below within every 200sec window.

1pps TIE



Network with Slave (example)

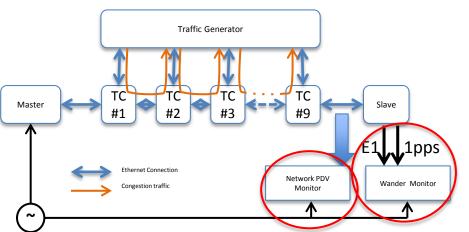
Test network



Experimental Network Configurations;

1.	9 switches,	No On-path Support,	No SyncE	\Rightarrow PTP for Frequency	& PTP for Phase
2.	9 switches,	all BC mode,	SyncE	⇒ SyncE for Frequency	& PTP for Phase
3.	9 switches,	all BC mode,	No SyncE	\Rightarrow PTP for Frequency	& PTP for Phase
4.	9 switches,	all TC mode,	SyncE	⇒ SyncE for Frequency	& PTP for Phase
5.	9 switches,	all TC mode,	No SyncE	\Rightarrow PTP for Frequency	& PTP for Phase

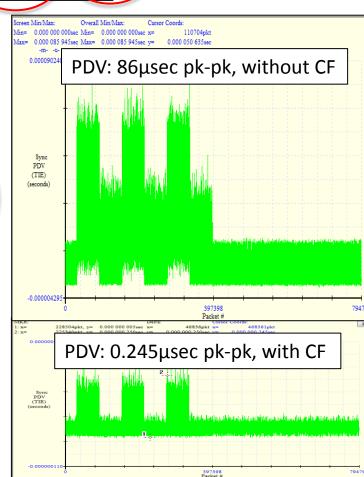
Results: BC networks


Test Set-up	PDV at input to slave	E1 wander (MTIE @ 5000sec)	1pps (pk-to-pk)	MKR: 1: x= 824258pkt, y= 2: x= 574958pkt, y= 0.000001080	Delta: Cursor Coords: 0.000 000 890sec x= -249301pkt x= 0.000 000 785sec y= -0.000 000 105sec y= 0.000 000 770sec -m - 0b - m - 0b - 0b	Sho
9xSw w/o SyncE	86µsec	2.44µsec	2.70µsec	Sync PDV (TIE) (seconds)	· · · · · · · · · · · · · · · · · · ·	—
				0.000000580	538066 Packet #	851089

Observations when BCs utilised;

- SyncE (EEC) + PTP gave the best results.
- BCs reduce the impact of congestion traffic,
 but congestion can still impact the transfer of frequency &/or Phase.

Calnex


Results: TC networks

Test Set-up	PDV at input to slave	E1 wander (MTIE @ 5000sec)	1pps (pk-to-pk)
9*Sw w/o SyncE	86µsec	2.44µsec	2.70µsec
9*TC w/o Sync	245nsed	1.10µsec	1.75µsec
9*TC with SyncE	(86µsec)*	0.137µsec	0.112μsec

Observations when TCs utilised;

- SyncE (EEC) + PTP gave the best results.
- TCs reduce the impact of congestion traffic,
 but congestion can still impact the transfer of frequency &/or Phase.

Calnex

Summary of Evaluation Plan

- SyncE
- 1588v2
 - BC
 - TC
 - Ordinary Clocks
 - Networks

- Standards in force.
- •G.8262
 - Wander
 - Jitter
- •G.8264
 - ESMC behaviour
- G.8273.2 Standard under development.
 - Time Noise Generation
 - Time Noise Tolerance
 - Time Noise Transfer
 - Phase Transient & Holdover;
- Consider behaviour during Traffic Congestion.
- Prove accuracy of CorrectionField.
 - Fixed Error, Variable Error, Asymmetry.
- IEEE Std C37.238-2011 'PTP in Power Systems Applications'
 - Profile specify ≤50nsec.
- Characterise using G.8261 Appendix VI test cases.
- Measure
 - Frequency Accuracy.
 - Time Accuracy.
- Metrics specified in G.8260 Appendix I.
 - FPP, limit in G.8261.1
 - MAFE, minTDEV, etc
 - pktfilteredMTIE, pktfilteredTDEV
- Evaluate selected devices with Network.

CALNEXSOL.COM

Tommy Cook tommy.cook@calnexsol.com +44 (0) 1506-671-416