

Leading the world in precise time solutions.

Complementary Operation of Satellite and Network Time Distribution

Tim Frost ITSF '12, Nice, November 2012

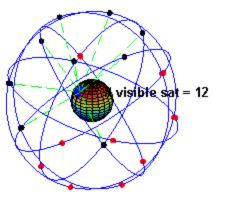
Confidential © Copyright 2012

- Time Synchronization Requirements
- Satellite time distribution
- Network time distribution
- Complementary operation

Mobile Synchronization Requirements

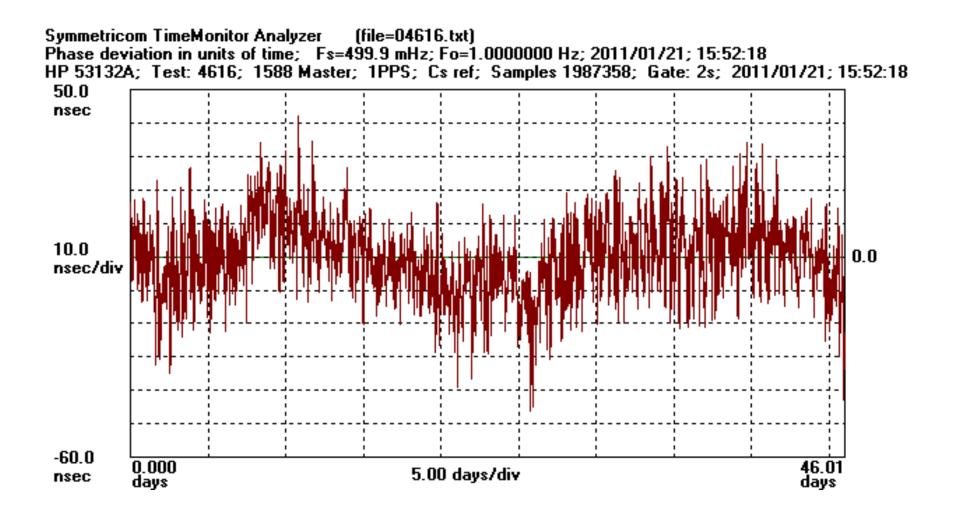
Application	Frequency: Network / Air Interface	Phase
UMTS / LTE FDD Small Cell	NA / 100 – 250 ppb	ΝΑ
GSM / UMTS / W-CDMA		NA
CDMA2000		± 3 to 10 μs
TD-SCDMA		± 1.5 μs
LTE – FDD		NA
LTE – TDD	16 ppb / 50 ppb	± 1.5 μs (≤3 km cell radius) ±5 μs (>3km cell radius)
LTE-A MBSFN		± 1 μs inter-cell time difference*
LTE-A Hetnet Coordination (eICIC)		± 5 μs inter-cell time difference*
LTE-A CoMP (Network MIMO)		± 0.5 μs inter-cell time difference*
WIMAX (TDD)		± 1 to 8 μs
Handset Location to 100m (E911)		± 100 ns

* Figures still under discussion in 3GPP ³

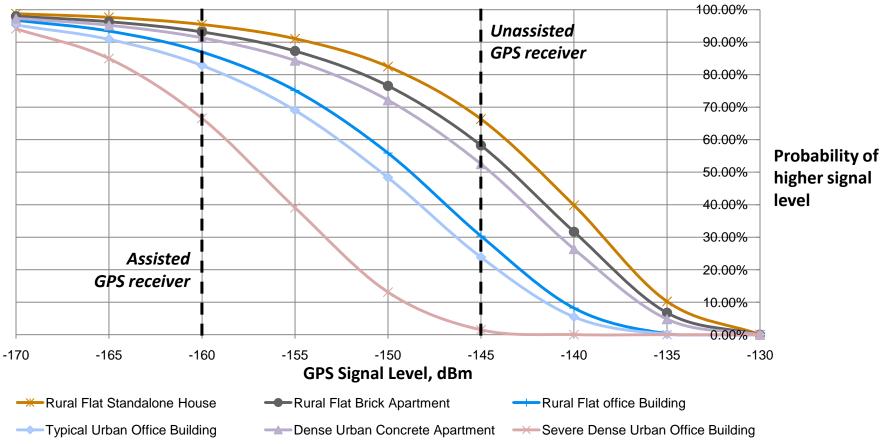


Satellite Time Distribution

Satellite Time Distribution (GNSS)

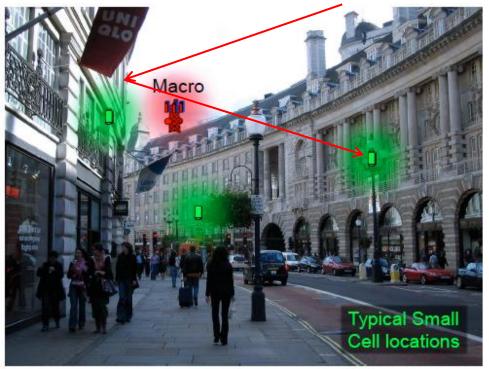

- Time distributed by radio from satellite
- Typical accuracy: < 100ns
- Advantages:
 - Global availability
 (provided there is a clear view of the sky)
 - Accuracy
 - System reliability
- Disadvantages:
 - Clear view of sky may not be available
 - Vulnerability to interference from ground based transmissions
 - Antenna issues wind, rain, snow, ice, corrosion, bullets!
 - Political issues

Long Term GPS Performance

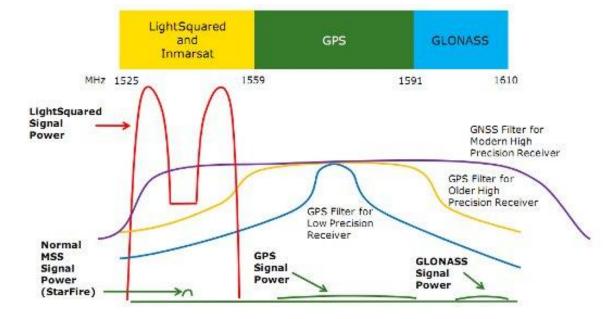


Confidential © Copyright 2012

Graph adapted from Small Cell Forum white paper "Femtocell Synchronization and Location", May 2012 7

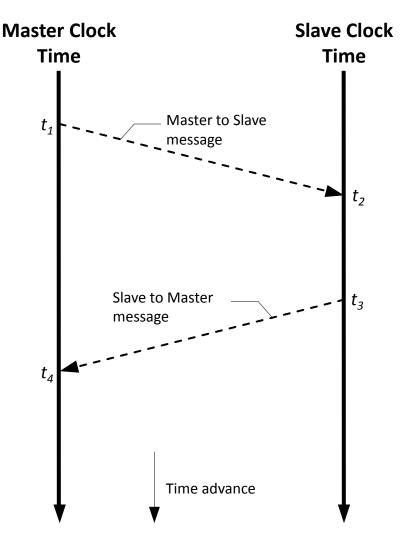

- Signal strength at earth surface around -130dBm
- Buildings may attenuate this by over 40dB

- May not be able to view sufficient satellites all of the time
 - Intermittent fixes
- Multi-path reflections distort range measurements
 - Path length change of 30m = time change of 100ns



Confidential © Copyright 2012

- Doesn't take much to jam a -130dBm signal!
 - Personal jammers
 - Legal terrestrial transmissions,
 e.g. Light Squared (now closed down)
 - Political jamming, e.g. North Korea



Network Time Distribution

Two-Way Time Transfer Techniques

- Basis of most network time distribution mechanisms
 - NTP, PTP, DTI, custom
- Based on a two-way timed message exchange between the master and slave
- Time offset calculation requires all four timestamps:
 - Slave time offset = $\frac{(t_2 t_1) (t_4 t_3)}{2}$
- Assumes symmetrical delays
 - i.e. the forward path delay is equal to the reverse path delay

Precision Time Protocol (PTP, IEEE1588)

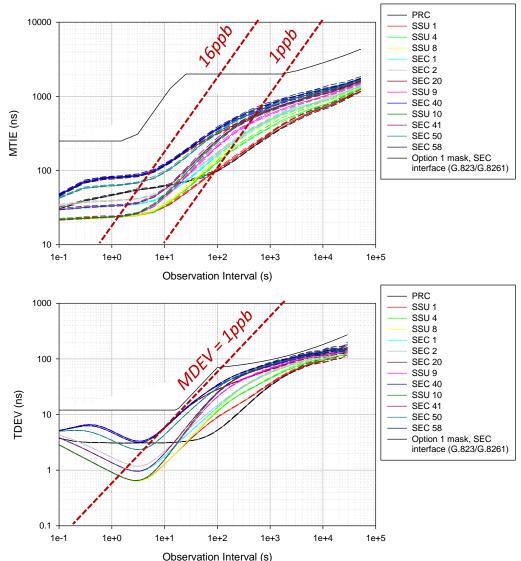
- Two-Way Time Transfer over packet networks, using accurate timestamps at the physical interface
- Designed to operate over standard communications networks such as Ethernet and IP in both LAN and WAN environments
- Introduces "on-path timing support" to mitigate variable delay in the network elements
 - Boundary clocks terminate and re-generate timing at each node
 - Transparent clocks add a correction for the delay through each node
- Typical accuracy: depends on size of network
 - Error may not accumulate linearly
 - Doesn't include asymmetry of link delays

There are no automatic network-based techniques that can compensate for link delay asymmetry

Advantages

- Operates over standard communications networks
- Spans multiple network nodes
- Disadvantages
 - Requires asymmetry correction
 - Forward/reverse signals may not take same route through network
 - Forward/reverse fibres may be different length, even in same bundle
 - Delays through PHY component may be different in each direction (especially at 10Gbit/s and above)
 - Requires adapted network elements for best performance
 - Boundary, transparent clocks at each node
 - **<u>BUT</u>** intelligent slave algorithms can filter PDV in absence of BCs or TCs

Synchronous Ethernet



- Uses Ethernet bit clock to carry synchronization signal
- Equivalent performance to conventional physical layer synchronization
 - Sync signal traceable back to PRC
 - Long term frequency accuracy of 1 part in 10^{11}
- Advantages
 - Stable, accurate frequency reference
 - No need for expensive ovenized crystal at slave clock
- Disadvantages
 - Frequency only, doesn't provide time or phase
 - Requires end-to-end infrastructure to support it

Symmetricom

SyncE Phase Wander

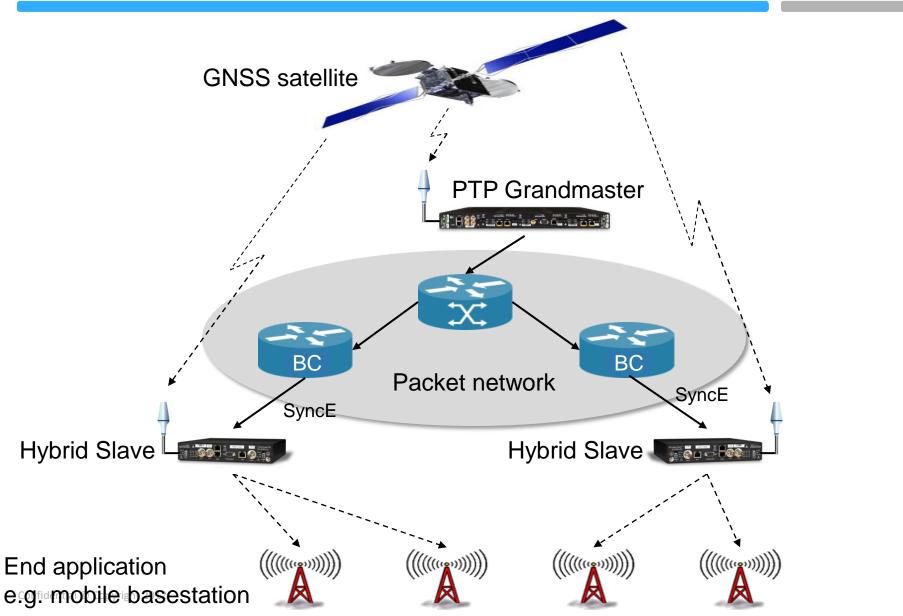
- Graphs show simulations of MTIE and TDEV at different points along a SyncE reference chain
- MTIE approaches 1µs after around 2000s
 - Limits the amount of time SyncE can be used to hold accurate phase
- TDEV shows stability of SyncE signal
 - Over 10 100s comparable with good quality TCXO at constant temperature (1ppb)

Simulation results from ITU SG15 Q13 Contribution C965, Huawei, June 2010

Complementary Operation

- Assisted GPS (AGPS) uses information from the network to assist in demodulating the GPS signal
 - Ephemeris data describes where each satellite is at any given time
- Time fix from PTP (to within a ms)
 - Allows GPS signal to be acquired at lower signal to noise ratio
- Position fix (e.g. from local survey)
 - Base stations typically don't move!
 - Known position also allows the signal to be acquired at a lower SNR
- Coherent Integration
 - Stable frequency allows GPS signal to be integrated for longer, improving acquisition
 - SyncE allows integration times of ≈5s, similar to a good TCXO

- OCXO or Rb oscillator will allow longer integration times


Maintaining time between GNSS fixes

- In urban canyons or in buildings, fixes may be several minutes apart
- Local interference or jamming may temporarily interrupt GNSS service
- Timebase maintained using stable frequency
 - OCXO will maintain 1µs for around 60s (variable temp)
 - SyncE will maintain 1µs phase for around 2000s
 - Rb oscillator will maintain 1µs for nearly 24 hours (variable temp)
- Timebase maintained using PTP
 - PTP will maintain phase indefinitely
 - GNSS time fix can be used to calibrate the asymmetry
 - Measures asymmetry on a "whole of network" basis

Hybrid PTP/GPS/SyncE solution

Advantages

- Initial PTP time fix allows acquisition of GNSS signal at lower power
- SyncE or oscillator stability allows longer coherent integration
- Accurate GPS time allows calibration of overall PTP asymmetry
- PTP provides backup in event of GNSS failure
- Disadvantages
 - Requires installation of multiple infrastructures

Conclusions

Conclusions

- Several commercial applications require time accuracy well below 1µs
- No single technique is a complete solution to this:
 - GNSS
 - PTP
 - SyncE
 - Advanced oscillators
 - modern temperature compensation techniques
 - miniature atomics (Rb and Cs)
- Hybrid techniques addresses the deficiencies of each
 - Creates an accurate, robust solution for precise time distribution
 - At least two are required for a reliable solution (GNSS + 1 other)

Thank You

Tim FrostCTO Officetfrost@symmetricom.comPhone : +44 7825 706952

Symmetricom, Inc. 2300 Orchard Parkway San Jose, CA 95131-1017 Tel: +1 408-428-7907 Fax: +1 408-428-6960

www.symmetricom.com