

Testing Telecom Packet Clocks

Kishan Shenoi, Chip Webb, Jason Nutt, Jarek Zdziech Ixia

- Testing Telecom Packet Clocks
 - Protocol (addressed in back-up)
 - Performance : Quantifying time error
- Test Principles (G.8273 Annex A)
- Testing Configurations (G.8273 Annex B)
- Concluding Remarks

(Back-up slides for information)

Testing PTP (Packet) Clocks

- Types of Clocks
 - Grandmaster Clocks (T-GM)
 - Could be integrated with a PRTC
 - Boundary Clocks (T-BC)
 - Transparent Clocks (T-TC)
 - Slave Clocks (T-TSC)
 - Variations based on whether for full-timing-support case or not
- Types of Ports
 - Master ports (T-GM, T-BC)
 - Slave ports (T-BC, T-TSC)
 - I/O ports (T-TC)
- Considerations synchronization may be different for time/frequency

Testing Master Ports

G.8273 Annex A

Testing Master Ports

- Two key parameters (G.8273 Annex A):
 - Time-stamp error
 - "Does time-stamp reflect the true time-clock of the device"?
 - Time-stamp errors: |TE₁| and |TE₄|
 - TE₁: error in time-stamp of Sync Message
 - TE₄: error in time-stamp of *Delay_Request Message*
 - Can be performed on individual packets
 - Time-transfer error
 - "Is device capable of delivering proper time synchronization to a downstream slave"?
 - Time-transfer error proportional to $|TE_1 TE_4|$
 - Extra signal processing involved to address impact of different rates and time-alignment of *Sync* and *Delay_Request* packets

Testing Master Ports

- Example Test Configurations (G.8273 Annex B)
 - T-GM could have external PRTC or integrated PRTC
 - The cable length between the T-GM and the monitoring tap must be calibrated

Testing Master Ports

- Example Test Configurations (G.8273 Annex B)
 - The cable length between the T-BC and the monitoring tap must be calibrated
 - Measuring TE₁ and TE₄ using 1pps identifies noise introduced by the master side of the T-BC

Testing Transparent Clocks

- <u>Effective</u> residence time = zero (nominally) after correction
- Time at reference point U and at reference point D should be equal

Testing Transparent Clocks

Test Configuration example (G.8273 Annex B)

Testing Slave Ports

- Principal performance parameters (G.8273 Annex A)
- Time-stamp errors TE₂ and TE₃ not generally visible externally

- For network limit examine |T_{OUT} |
- For generation examine |T_{OUT} – T_{SLV}|
- Slave time-clock via 1PPS(+TOD) for T-BC and T-TSC

Testing Slave Ports

- Testing Configuration (G.8273 Annex B)
- Time error visible via the 1pps output (T-BC and T-TSC)

Testing Slave Ports

- Testing Configuration (G.8273 Annex B)
- Slave clock time error visible if precise value of T₃ provided in delay_request message or subsequent (not-standardized) follow-up message

- For a measured time error sequence {x(n)} or filtered time error sequence {y(n)} (commonly proposed filter: 0.1Hz):
 - Max (absolute) time error : |x(n)|_{max}
 - Max (absolute) filtered time error : |y(n)|_{max}
 - MTIE... maximum (absolute) time interval error (stability metric)
 - TDEV... stability metric that describes power (and type) of noise
 - MATIE... maximum (absolute) averaged time interval error
 - MAFE... related to MATIE
 - TEDEV... standard deviation of averaged time interval error
 - cTE... estimate of constant time error: average of N samples
 - Other (TBD)

Special Considerations

- Measuring time error (static and dynamic) increasing in importance
 - "Frequency" metrics (PDV) necessary but not sufficient
- Boundary clocks (and transparent clocks) are not perfect
 - Effectively introduce static as well as PDV-like (dynamic) timing impairments (time error)
- Reason for impairments may be implementation dependent
 - Behavior affected by sync rates and traffic loads
- Testing during equipment development phase is very helpful
- Test Equipment measurement granularity must be substantively better than expected clock behavior
- For measuring transit delay the time-stampers (test equipment) at "U" and "D" must be synchronized to each other

Thank You! Questions?

Back-up Slides

Metrics Mathematics

17

Time error $\{x(n\tau_0)\}$

Clock
Error
$$x | n\tau_0 | = a_0 + \eta \cdot | n \cdot \tau_0 | + \varphi | n \cdot \tau_0 |$$

model a_0 : constant time error η : frequency offset

- φ : Noise terms ("random")
- Metrics establish "strength" of time error. Different metrics focus on different aspects of this "strength".
- Maximum absolute time error : $|x(n\tau_0)|_{max}$ is the overarching time error metric (maximum over all time)
- First difference eliminates a₀: strength of {x(n+k) x(n)} quantifies stability of the time error
 - Variations include MTIE, MATIE, TEDEV
- Second difference eliminates η and a_0 : strength of {x(n+2k)-2x(n+k)+x(n)} quantifies stability of the frequency (e.g. TDEV, ADEV, MDEV)

- Possible to separate "high-band" and "low-band" time error by filtering {x(n)} to get {y(n)}
 - Identifies the component that could be in the pass-band of the down-stream clock
- Some metrics include an average over one observation interval (k samples) that is incorporated into the formula
 - MATIE, TEDEV, TDEV, MDEV

Principles of on-path support

- Time transfer accuracy bounded from below by transit delay asymmetry (Δ_1 and Δ_2)
- Frequency transfer accuracy impaired by transit delay variation
- On-path support attempts to:
 - Minimize (eliminate) transit delay asymmetry in NE
 - Minimize (eliminate) transit delay variation in NE
 - Time transfer error is minimized [$\geq (\Delta_1 + \Delta_2)$]

Principles of on-path support

- Consider (hypothetical) slave deployed just before or just after NE
 - Without on-path support the slave at B has different time/wander behavior compared to the slave at A; performance is load dependent
 - *With* on-path support the slave at B has (ideally) the *same* time/wander behavior compared to the slave at A; performance *should be load independent*
- Two forms of on-path support:
 - Boundary clock "regenerates" master
 - Transparent clock acts "invisible" (by providing correction)

Slave at A \neq Slave at B

1588v2 Protocol Testing – Master / Slave

Testing Master / Slave Clocks

- Ethernet, IPv4 or IPv6
- Multicast or Unicast
- One-step or Two-step
- Delay-Request/Response, Peer Delay or One-way
- Priority: 802.3P, IP ToS or DiffServ
- All clock parameters including BMC

- Messages rates:
- Telecom Profile G.8265.1 parameters
- Key measurements: min/max/ave offset, path delay, all message counters and rates
- Test Best Master Clock algorithm

each PTP packet

What To Test for PTP Equipment

G.8261 Test Cases

- PDV of network emulated using precise profiles with Anue 3500
- Wander on the recovered clock of slave is evaluated according to the ITU-T standards (MTIE & TDEV)
- Time Error & Phase
 - Compare 1PPS of master with slave
 - LTE requirement: <1.5us
 - Measure PTP packet time error
 - Boundary Clock timestamp accuracy (time error)
 - Grandmaster Clock timestamp accuracy (time error)
 - Transparent Clock correction field accuracy

MTIE Plot example

- Top line is mask
- Bottom line is measured TIE
- Staying below the mask indicates a "pass"`

Testing to G.8261

- Slave Clock (aka Ordinary Clock) Functionality
 - Receives timestamps from sync and follow-up packets from master
 - Calculates network delay using delay request, delay response sequence
 - Delivers the recovered clock to the host or network
 - PDV in the network affects recovered clock accuracy
- Boundary Clock Functionality
 - Potential for timestamp error same effect as PDV
 - Caused by: queuing delays, inaccurate clock recovery, network congestion, etc.
- Transparent Clock Functionality
 - Potential for correction field error
 - Inaccuracy in the correction field can reduce the effectiveness of the transparent clock to remove the cumulative effects of PDV

Delay Stats (ms)		
	Delay	Time
Minimum	0.072	00:07:38
Maximum	0.124	00:16:02
Average	0.076	

BCs and TCs– Not Ordinary Switches

- In most conventional methods boundary clocks and transparent clocks are tested as a neighbor to a slave clock and the test result derived from the slave's output
 - G.8273 considers direct evaluation of on-path support
- Real-world testing reveals surprising results
 - Boundary and transparent clocks do introduce impairments
 - There is a source of time error impairment (static and dynamic) caused by a boundary/transparent clock that must be evaluated
 - Impact of a boundary clock on frequency recovery may be comparable to that of an ordinary switch with no on-path support (TC under study)
- Methods of testing that consider **both** static and dynamic impairments are required for validating time/phase transfer

Testing Boundary Clocks

Boundary Clocks

- Provide PTP services at network junctions with, possibly, multiple master ports to supply downstream clocks from one slave port
- Comparatively new devices and industry is still learning
- Boundary clocks must fit into existing network topologies
- Testing Challenges
 - Boundary Clocks may introduce non-linear timing errors whose effects are analogous to time error produced by busy switches
 - Boundary Clocks have 1pps outputs to test the "slave" side of BC but that does not address the master port
- Methods for accurately identifying and analyzing the timing impairments introduced by a boundary clock are maturing

Boundary Clock Test Scenario #1 Evaluate Boundary Clock Impairment

(Reference Clock)

Time-stamp impairment created by the Boundary Clock (Master) looks like time error (static and dynamic) to downstream slave

KIXIA Anue Impact of Boundary Clock with emulated impairment

Evaluate impact of Boundary Clock's timing impairment on Slave's recovered clock

- Experiments on a real-world engineering prototype
 - The time error represented here indicates the difference between the time-stamp and the actual measured arrival time of the packet (time-stamp error)
- Changes in this impairment were observed when the conditions changed
 - Changing the sync packet rate from the Grand Master to the BC's slave port, or from the BC's master port to the slave
 - Adding background traffic to the Boundary Clock under test
 - Adding time error (impairment) from the Grand Master to the BC's slave port

- Grand Master sync rate 4pps
- Boundary clock master-port sync rate 16pps
- Substantial time error observed during 5-minute window

- Grand Master sync rate 8pps
- Boundary Clock master-port sync rate 8pps
- Dramatic change in behavior compared to other sync rate

Boundary Clock Impairment – BC #2 *no background traffic, no impairments*

- Grand Master sync rate 8pps
- Boundary Clock master-port sync rate 8pps
- A different device has dramatically different results

Transparent Clock Behavior

- Graph shows the "raw" delay for sync packets through the TC
- Packet delays of ~900ms were observed (even with no load)
- Grand Master sync rate 4pps

Transparent Clock Behavior

- Graph shows the corrected delay for the sync packets
- Packet delay variation reduced to ~24ns; delay error to ~2.7 μ s
- TC measurement granularity of 8ns is visible
- Note: this behavior was observed to be load independent

Measuring instrument Granularity

- The TC correction quantization is ~8ns
- Observation of this granularity requires test device to measure with a precision of much better than ~4ns
- The measurement granularity of the test equipment is seen to be ~1ns

Measuring instrument Granularity

- Histogram view shows the ~8ns granularity of the TC and the ~1ns granularity of the measuring instrument
- Without this granularity, the discrete nature of TC correction error would not be visible

- Boundary Clocks Introduce Impairments
 - Internal Clock
 - An internal clock is derived from the PTP on the slave port of the BC in the usual manner and this local clock is used to create time-stamps on outgoing PTP traffic
 - Inaccuracy in this clock creates impairment:
 - Inaccurate time-stamps going out the master port; *time-stamp does not accurately indicate the true real time*
 - any errors result directly in inaccuracy in the downstream clock recovery
 - System (PHY) clock
 - The system clock or PHY clock may be asynchronous with respect to this internal PTP-derived clock
 - Any difference in these two clocks results directly in inaccurate time-stamps, even if the PTP internal clock is perfect

Boundary Clock Challenges Not Ordinary Switches

- Many boundary clocks are multi-function devices with many features not related to timing that compete for resources with PTP
 - L2 features such as spanning tree, VPNs, redundancy, VLANs, etc.
 - QoS L2 & L3, different egress and ingress, marking, priority, etc.
 - Routing, Switch Virtual Interfaces, Routing Protocols, VRFs, MPLS
- Architecture of these devices may not be ideal for PTP
 - Designed primarily for fast switching of packets from port to port
 - Limited emphasis on speed, latency, etc. of CPU-generated or control-plane traffic
- These caveats of Boundary Clocks are important to characterize
 - They may not typically perform like a standard L2 switch with respect to PDV
 - They may have significant impact on the performance of PTP networks
- A boundary clock cannot simply be treated as if it were an ordinary switch for testing purposes

- Important questions remain regarding BC/TC testing
 - What limits or metrics are applicable for impairment introduced by a boundary clock as in Test Scenario #1?
 - TIE / PDV? Maximum Time Error? What limit is to be expected?
 - Will require both: constant time error ("static"), as well as TIE/PDV ("dynamic")
 - What PDV impairment profiles apply to test with impairments before and after the Boundary Clock as in Test Scenario #2?
 - Does some model apply which emulates N number of Boundary Clocks, or networks combining Boundary Clocks with ordinary switches?
 - What is the precision/accuracy required in the test equipment?
 - Rule-of-thumb: at least one order of magnitude better than the same function in the DUT (e.g. time-stamping)
 - Test signal generation (e.g. introduction of wander):

Testing Challenges Boundary Clock as Slave or Master

- Testing Boundary Clock as a slave or ordinary clock
 - ITU-T Rec. require that T-BCs have a 1pps test port
 - The standard G.8261 tests are performed without regard for the Boundary Clock's master port behavior, therefore do not address the purpose of the boundary clock
 - This test does not address the time impairment introduced by circuitry between the boundary clock's slave and master ports
- Testing Boundary Clocks as a master clock
 - The standard G.8261 tests are performed with PDV impairment is added between Boundary Clock and slave. Slave's recovered clock interface is evaluated against the standard MTIE/TDEV masks
 - This test does not address the ability of the Boundary Clock to recover an accurate clock in the presence of time error between the BC and the GM
 - The Boundary Clock is not being measured directly; the result is dependent on the performance of the slave device

- Monitoring/measuring time error on both sides of a boundary/transparent clock
 - Comparison between input and output reveals the static and dynamic impact of the device and we can verify whether it is affected by
 - Background traffic, incoming and outgoing sync packet interval, QoS, routing, etc
- Impairment on both sides of a boundary/transparent clock
 - Impairment is added between the GM Clock and BC/TC, and between the BC/TC and slave clock, simultaneously; recovered clock at remote slave is measured
 - Profiles need to be developed
- Measure ToD error and phase (1PPS) error introduced by boundary clocks
 - Monitor and measure timestamp accuracy of sync, follow-up packets from master port of boundary clock and measure phase offset of 1PPS between GM Clock and Slave with boundary clock in between