

Tutorial: Network-based Frequency, Time & Phase Distribution

Christian Farrow B.Sc, MIET, MIsntP

Technical Services Manager Chronos Technology Ltd 4th Nov 2014 ITSF - Budapest

Presentation Contents

- Introduction
- Physical Layer Distribution
- Packet Layer Distribution
- Summary

Freq, Phase & Time

- Frequency Synchronisation (Syntonisation):
 - Clocks tick at the same rate
- Phase Synchronisation:
 - Clocks tick at the same moment
- Time Synchronisation:
 - Clocks tick at the same moment & are aware of the same time & date.

The (in)famous stack model

How Are "Bits" Represented..?

The value of a Bit (0 or 1) can be represented by different modulations of a carrier signal examples are:

Bit Synchronisation

- The precise frequency and pulse width of a transmitted signal are determined by a clock on the network equipment, the "Write Clock"
- Receiving equipment has a "Read Clock" that determines the precise time that the received signal is sampled.
- The clocks of the two elements must be within set tolerances or the signal may be misread.

Time Division Multiplexing (TDM)

• Multiplexing is the method of combining two or more lower rate signals into a single higher rate signal for transport over a single transmission medium.

- Data is transmitted in chunks usually referred to as bytes, cells or frames.
- The frames each have a "timeslot" reserved in the higher rate signal.

PDH Multiplexing

- Plesiochronos Digital Hierarchy is a method of multiplexing signals into higher rates then de-multiplexing when required.
- Plesiochronos "plesi" near and "chronos" time. The clocks on the equipment run at a nominal frequency within a set tolerance, any frequency offsets are taken up by "bit stuffing", the addition of extra bits to fill the transmission.

Noise Accumulation

 As a synchronisation is passed through network elements, additional noise is accumulated along the sync trail.

Synchronisation Status Message in SDH

- SSM in Bits 5-8 of S1 byte of STM-N G.707
- SSM is a quality indicator for the source of the sync chain
 - Defined in EN 300 417-6-1
- Always select best clock input in selection list
 - $SSM_{out} = SSM_{in}$ of selected source
- SSM overrides operator priority selection
- Assumed quality assigned to non SSM supporting interfaces

	S1 Byte (bits 5	5-8) Source of Sync Trail
	0000	Synchronisation quality unknown
Standards	0010	PRC - EN 300 462-6-1
G 707	0100	SSU-T - EN 300 462-4-1
• U.707	1000	SSU-L - EN 300 462-7-1
• EN 300 147	1011	SEC (SETS) - EN 300 462-5-1
• EN 300 417-6-1	1111	Do Not Use (DNU) for synchronisation

SyncE Overview

How is SyncE different from normal Ethernet?

Existing Ethernet PHY (Physical Layer)

- IEEE 802.3 defines Ethernet PHY
- Rx uses incoming line timing. Tx uses free-running 100ppm oscillator.
- No relationship between the Rx & Tx.

SyncE PHY (Physical Layer)

- Rx disciplines the internal oscillator
- Tx uses the traceable clock reference, creating end-to-end scheme.
- PRC can provide the reference. SSUs filter jitter/wander.
- SyncE and asynchronous switches cannot be mixed.

QL in SyncE - ESMC

ESMC & IEEE 802.3ay OSSP

esmc.pcap [Wireshark 1.8.3 (SVN Rev 45256 from /trunk-1.8)]	_ 🗆 🗙		
<u>File Edit View Go Capture Analyze Statistics Telephony</u> <u>T</u> ools <u>I</u> nternals <u>H</u> elp			
Filter: Expression Clear Apply Save IQ tfr b/cast from probe	•		
No. Time Source Destination Protocol Length Info			
10.000000 00:00:00_00:00:20 Slow-Protocols ESMC 60 Event:Information, QL-PRC			
Frame 1: 60 bytes on wire (480 bits), 60 bytes captured (480 bits)			
Ethernet II, Src: 00:00:00_00:00:2b (00:00:00:00:2b), Dst: Slow-Protocols (01:80:c2:00:00:02)			
Destination: Slow-Protocols (01:80:c2:00:00:02)			
Source: 00:00:00_00:2b (00:00:00:00:2b) Tract Slev Drotocolc (0x8800)			
Type: Slow Protocols (0x8809)			
Slow Protocols subtype: Organization Specific Slow Protocol (0x0a)			
OUI: 0019a7 (Itu-T)			
□ ITU-T OSSP Subtype: 0x0001: ESMC, Event:Information, QL-PRC			
$0001 \dots = \text{Version: } 0x01$			
0 = Event Flag: Information ESMC PDU (0x00)			
)0)		
Reserved: 0x0000000			
ESMC TLV, QL-PRC			
TLV Type: Quality Level (0x01)			
TLV Length: 0x0004			
0000 = Unused: 0x00			
0010 = SSM Code: QL-PRC, Primary reference Clock (G.811) (0x02)			
H Padd mg: 00000000000000000000000000000000000			
$0000 01.80 c^{2}.00.00 02.00 00 00 00 2b 88 09 0a 00 + +$			
0010 19 a7 00 01 10 00 00 01 00 04 02 00 00 00 00 00			
0020 00 00 00 00 00 00 00 00 00 00 00 00			
🕖 🌠 Frame (frame), 60 bytes 🛛 Packets: 1 Displa Profile: Default			

From clocks to packets

- Packet "clocks" can be thought of in the same way as physical layer clocks...
- CES Packets do have a regular rhythm E1 = 1mS
- NTP/PTP Packets may not arrive regularly, but timestamps within the packets themselves mean time information can be extracted
- Time and timing can be distributed from point A to point B

Packet Transport & Switching

Packet Delay Variation

 Even with priority schemes packet delay variation can be significant

At 100 Mbit/s 1000 byte packet = 8 x 1000 / 100 x 10^6 = 80µs

At 10 Mbit/s 1000 byte packet = 8 x 1000 / 10 x 10^6 = 0.8ms

Adaptive Clock Operation

- A common network clock may not be available at Packet/(Cell) network boundary
- May not need clock purity provided by network-synchronous and Differential/SRTS methods

Features and mechanisms of NTP described in RFCs

"Request For Comments"

the blueprints for the internet

1985	NTPv0
1988	NTPv1
1989	NTPv2
1992	NTPv3
2010	NTPv4

RFC 958 RFC 1059 RFC 1119 RFC 1305 RFC 5905/6/7/8 Security, IPV6, DHCP, MIB

1996 SNTPv4

RFC 2030

How NTP Works

- T1 Originate Timestamp
 - Time request sent by client
- T2 Receive Timestamp
 - Time request received by server
- T3 Transmit Timestamp
 - Time reply sent by server
- T4 Destination Timestamp
 - Time reply received by client
- Round Trip Delay=(T4-T1)-(T3-T2)
 - Round Trip Delay =25-10=15
- Clock Offset= [(T2-T1)-(T4-T3)]/2
 - Clock Offset =[5-10]/2= -2.5 (Clients actual time when reply received was therefore 09:00:0225)
- Key Assumptions:
 - One way delay is half Round Trip (symmetry!)
 - Drift of client and server clocks are small and close to same value
 - Time is traceable (worth distributing!)

NTP Inputs and Outputs

Inputs - 3 x sources of equal or higher quality time from peers or servers Output - Adjusted time available to peers and clients

NTP Messages Timestamps

IEEE 1588-2008 PTPv2 Overview

- The Grandmaster "reference clock" sends a series of time-stamped messages to slaves.
- Slaves eliminate the round-trip delay & synchronize to the Grandmaster.
- Frequency is recovered from an accurate time of day reference.
- Accuracy is enhanced by:
 - Frequent packet send rate (up to 128 per second)
 - Hardware time-stamping (eliminate software processing delays)
 - Best Master Clock Algorithm (optional, "best" master voted by nodes)

PTPv2 Slave clocks can be either standalone or embedded in network equipment

- The Grandmaster (Server) sends the following messages:
- Timing Messages (3 types):
 - Sync message
 - Follow_Up message (optional)
 - Delay_Resp(onse)
- Announce message (GM status)
- Signaling (2 types)
 - Acknowledge TLV (ACK)
 - Negative Acknowledge TLV (NACK)

- The Slave (Client) sends the following messages:
- Timing Messages
 - Delay_Req(uest)
- Signaling (3 types)
 - Request announce
 - Request sync
 - Request delay_resp(onse)

Time Transfer Technique

Rou	nd Trip Delay RTD = (t2 - t1) + (t4 - t3)
Offs	et: (slave clock error and one-way path delay) Offset _{SYNC} = $t2 - t1$ Offset _{DELAY_REQ} = $t4 - t3$
We	assume path symmetry, therefore One-Way Path Delay = RTD \div 2
Slav	ve Clock Error = (t2 - t1) - (RTD \div 2)
Note	es:
1.	One-way delay cannot be calculated exactly, but there is a bounded error.
2.	The protocol transfers TAI (Atomic Time). UTC time is TAI + leap second offset from the <i>announce</i> message.

The process is repeated up to 128 times per second. (Announce rate is lower than Sync rate)

PTPv2 Announce Messages

- Announce messages hold information about the status, precision and accuracy of the Grandmaster
 - Changes in values within Announce packets reflect changes in conditions at the GM
- Transmitted to all Slave clocks at regular intervals (1 per second is normal)
 - Slave clocks use information in the Announce message in the Best Master Clock algorithm or to switch GM if
- Holds the following information used by Slave clocks:
 - Leap second information
 - GM clockClass lower values mean a higher class of clock
 - **GM Accuracy** ranges from 100ns to Unknown
 - GM TimeSource GPS, Arbitrary, Unknown
 - Time Traceable Flag True/False
 - Frequency Tracable Flag True/False
 - **PTP TimeScale Flag** True/False
- Other information held also: Leap second indicator, Two-step clock mode, etc.

"The Telecom Profiles" (G.8265.n/G.8275.n)

- A profile is a subset of required options, prohibited options, and the ranges and defaults of configurable attributes
 - e.g. for Telecom: Update rate, unicast/multicast, etc.
- PTP profiles are created to allow organizations to specify selections of attribute values and optional features of PTP that, when using the same transport protocol, inter-works and achieve a performance that meets the requirements of a particular application
- Other (non-Telecom) profiles:
 - IEEE C37 238 Power Distribution Industry
 - 802.11AS AV bridging (AV over domestic LAN)

Combination Operation SyncE as "frequency assistance" to 1588 PRC PTP **1588 Packet Stream** РТР 1588 1588 SvncE Node SvncE Node Client Stream **SyncE Physical Layer** GM Stream **PSN PRC** freq

- Gives immediate "frequency lock" to 1588 client
- SyncE & 1588 functionality may be in the same node/element

Summary

- Physical Layer Sync Distribution
 - Historically frequency, phase
- Packet Layer Sync Distribution
 - Historically time (NTP)
 - PTP (& "carrier class" NTP) add frequency & phase
- Combination operation
 - Using both physical and packet layers to deliver frequency, phase & time with greater accuracy & reliability.

Thank you for listening

www.chronos.co.uk

Christian.Farrow@chronos.co.uk