

Holdover – Who needs it?

ITSF 2014

What is holdover?

□ Normal sync operation

- Device locks to a clock from an external source
 - In-band with data (T1/E1, SONET, SyncE)
 - Separate source (GPS)
- Can also pass clock downstream
 - After necessary filtering

But what if something goes wrong

- No external clock sources available
- We're on our own
- Only option is keep doing the best we can ...
- ... for as long as we can
- Might be able to operate with reduced performance

Principle of holdover

- Acquire data about the reference while locked to it
- Use that data in conjunction with local oscillator to maintain output
- Holdover quality depends on local oscillator stability and "holdover data"

Frequency Holdover

Fractional Frequency Offset, y(t)

10-4

10-5

10-6

10-7 5×10-8

10-8

3.3×10⁻¹

Typically specified directly or by an MTIE mask

Traditionally applications only required frequency

Holdover meant maintaining frequency error below a certain level

107

~9×10⁶ 200 10-9 103 10^{2} 104 106 105 Time, t (seconds)

Variable Temperature

Constant Temperature

- These limits are fairly lenient
 - 24 or 72 hour frequency holdover really isn't a problem

© Semtech Corporation 2014

Time Holdover

□ Now, time is needed everywhere

- Cellular backhaul is a big driver
 - TDD
 - CoMP
 - elClC

□ Benchmark phase error target is 1 µs

That's not much ...

- Remember that time is the integral of frequency error
- Errors add up very quickly

□ 1.5 µs over 24 hours:

- Fractional frequency error = 1.5*10⁻⁶ / (24 * 60 * 60)
- = 17.4 ppt
 - That's part per trillion not million ... not billion ... trillion

Time holdover puts massive requirements on local oscillator

Oscillator Options

□ Factors determining holdover performance:

- 1) Oscillator selection,
- 2) Oscillator selection
- 3) And ... Oscillator selection

□ There's only really two options ...

- Quartz-based
 - TCXO
 - OCXO
 - TCOCXO
- Atomic-based
 - Caesium beam
 - Rubidium
 - CSAC (Chip-scale atomic clock)

Accuracy vs Stability

□ Important not to confuse terms

- Accuracy
 - How close to marked frequency the oscillator is initially
- Stability
 - How the frequency changes over a period of time

□ Holdover only cares about stability

- Accuracy is compensated for by comparing frequency to reference while locked
- Stability over holdover period is key
 - No additional reference to compare to

Quartz Oscillator Options - TCXO

□ TCXO – Temperature Compensated Crystal Oscillator

- Simple AT-cut crystal
- Operates at ambient temperature
- Measures temperature and compensates for it
 - 3rd order or higher polynomial
 - · Adjust frequency by varying load capacitance
- □ Cost Low (\$5 +)
- □ Size Can be tiny (5 x 3.2 mm or smaller)
- Power Low (no heating element)
- □ Stability Okay (0.1 1 ppm after 24 hours)

7

Quartz Oscillator Options - OCXO

OCXO – Oven Controlled Crystal Oscillator

- Often an SC cut crystal
- Uses heating element to maintain stable temperature
 - Above worst case ambient and optimised for SC crystal stability
- □ Cost Higher (\$25 +)
- □ Size Larger (often 1" x 1")
- □ Power Higher (Heating element)
- □ Stability Good (1 10 ppb after 24 hours)

□ TCOCXO is hybrid of TCXO and OCXO

- Temperature compensation and stabalization
- Between TCXO and OCXO in all parameters

Atomic Oscillator Options

- □ Combines "physics cell" with crystal oscillator
- Tune RF excitation to match atomic transition of caesium or rubidium
- Quartz oscillator then locked to RF frequency
- □ Cost Very high (\$500 ++)
- Size Rb / Cs beam very large CSAC comparable to OCXO
- Power Rb / Cs beam high CSAC – low (can be battery operated)

© Semtech Corporation 2014

Stability – Good to excellent

Oscillator Summary

Technology	Oscillator Type	Stability	Cost	Size	Power	
Quartz	тсхо	-	èn èn	èr èr		
	ОСХО				9	
Atomic	Cs-beam / Rb		-			
	CSAC	èy èy	-			

Compensating a Quartz Oscillator

- □ All holdover functions compensate for accuracy
- What about trying to compensate for stability too?
 - Affected by
 - Temperature
 - Voltage
 - Aging
 - Lessor factors such as output load

Oscillator technology already handles temperature

- Compensation (TCXO)
- Stabilization (OCXO)

Voltage and other factors should be stable in a good design

□ Just leaves aging

Can we compensate for this?

Aging Compensation

Track oscillator frequency against reference while locked

- Just as for normal holdover
- But now, try to determine second-order effects

It's not trivial ... But it can be done

Biggest issue is aging swamped by temperature

What Have we Learnt?

□ Time holdover is tough

❑ Atomic oscillators provide a good solution

At a price

Quartz can provide a good solution

- Especially with aging compensation
- But again, quality OCXOs are expensive

Perhaps the same everywhere doesn't work

□ Can we get smart?

- Limit holdover to certain locations?
- Limit holdover time?
- Eliminate it altogether?

Where Do You Put Holdover?

□ Holdover is expensive

- Financial cost of oscillator
- Potential for increased real estate
- Potential for increased power
- The better the holdover the more expensive it is
 - Money, size and power
- Cellular networks are moving to HetNet architectures
 - Macrocells
 - Smallcells
- Small cell aggregation point often associated with a macrocell

The Role of Small Cells

- Increased bandwidth
 - Especially good for high user density areas
- □ Improve in-building coverage
 - Energy efficient building are not good for RF
- ❑ Urban canyons
 - Fill-in for areas with poor macro coverage
- ☐ Temporary cell sites
 - Sporting events etc.
- Typically a small cell has a single data link to the aggregator
 - Traffic + Sync
- Does a small cell need holdover?
 - If the link goes down data connectivity is lost
- Why not limit holdover to macrocells
 - And aggregators

LTE Advanced Heterogeneous Network

Do we need 24 hours?

One day is a long time

□ How long does it really take to:

- Identify a failure has occurred
- Locate the failure
- Roll a truck
- Fix the problem
- Return the equipment to operational state?

Time will depend on equipment and location

- Less for an in-building small-cell
- More for a rural macrocell

□ How about we get smart?

- Provide minimal holdover function appropriate to equipment type
- Dynamically manage network for longer outages
 - Reconfigure adjacent cells to work around outage

Do we Even Need Holdover?

- Why not just provide multiple sync paths?
- □ Automatically select GNSS if available

Back up GNSS with Backhaul using PTP

- Support 2x PTP Grand Master simultaneously
- 3-way majority vote detects GNSS or PTP GM issu
- **Embedded PTP Grand Master**
 - Distributes time to local indoor cells
- Indoor Cells Prioritise Local Master
 - Back up with a network G.M.
 - Indoor Cells automatically cancel asymmetry on failover to networked G.M.

How About an Overlay Sync Network?

- Low cost
- Ideal for urban areas

Predictions are that 7 concentrators will cover all of lower Manhattan

A conservative 1 mile radius allows for some in-building penetration even at the edges.

Making it Work

Multi-sync sources sound good in theory

But need to be managed well to work correctly

Can't have time jumps

Need hitless switching

Equipment designs need to be smart

- Lock to multiple sources simultaneously
- Switch between them with phase and frequency buildout

SEMTECH

Summary

The move to "time everywhere" poses a big problem for holdover

□ Holdover is expensive ...

- Money
- Space
- Power

We should get smart

- Can we use multiple sync sources instead?
- Can we restrict holdover to specific locations?
- Can we reduce the holdover period?
- What holdover performance do we really need?

Thank You! Questions?