
Synchronization in an NFV World

www.calnexsol.com

• What are Virtualisation and Network Function Virtualisation?

• Standards for NFV

• Why does NFV affect synchronization?

• Challenges and Questions

• Summary

Synchronization in an NFV World

2

What are Virtualisation and
Network Function Virtualisation?

3

Doing in software what is traditionally done in hardware by emulating
the hardware

Virtualisation

4We replace this With this

• Network Functions Virtualization
• The replacement of dedicated network elements with software

implementations running on standard servers

What is NFV?

Router
Firewall

NAT

RNC

SGSN/GGSN

Media Gateway

Dedicated hardware
for each function

Virtual
Appliance

Virtual
Appliance

Virtual
Appliance

Virtual
Appliance

Virtual
Appliance Virtual

Appliance

Virtual
Appliance

Standard shared hardware,
virtual functions

5

Virtualisation Layers

6

COTS Hardware running a Type 1
Hypervisor (e.g. VMWare)

COTS Hardware running a Traditional
OS (e.g. Linux or Windows)

Type 2 Hypervisor (E.g. KVM/QEMU or
Virtual Box)

VM
running a
guest OS

VM
running a
guest OS

VM
running a
guest OS

VM
running a
guest OS

VM
running a
guest OS

VM
running a
guest OS

Virtual
Network
Functions

Virtual
Network
Functions

Virtual
Network
Functions

Virtual
Network
Functions

Virtual
Network
Functions

Virtual
Network
Functions

Physical NICs Physical NICs

Virtual NICs and Switches

Virtual NICs and Switches

COTS = Commercial Off the Shelf System
OS = Operating System
NIC = Network Interface Card

VM = Virtual Machine

Why adopt NFV?

7

Massively Increased Flexibility
Greatly Increased Speed of Deployment
and Reconfiguration

+

Standards

8

ETSI NFV Reference Architecture

9

• ETSI have finalized several Standards, Recommendations and
Use Cases for NFV.
• http://www.etsi.org/technologies-clusters/technologies/nfv

• Virtualization Requirements document, Section 5.8:
• http://www.etsi.org/deliver/etsi_gs/NFV/001_099/004/01.01.01_60/gs

_NFV004v010101p.pdf

• Service Assurance suggests the use of IEEE 1588 timestamps

• Implemented on the NIC to establish a common time base for physical
layer and upper layer processes

• Timestamps to be used as precise time labels for all event processes

Standards for NFV Synchronization

10

http://www.etsi.org/technologies-clusters/technologies/nfv
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/004/01.01.01_60/gs_NFV004v010101p.pdf

Why does it affect
Synchronization?

11

12

It’s all about Accuracy

Software is both slower and much
less deterministic than hardware.

The underlying processor hardware is
usually clocked by a relatively low

quality oscillator.

Disk

13

Process 1

Process 2

Process 3

Process 4

Processor

Process 5

Interrupt
Routine

Interrupt

What Makes Software Less Deterministic?

The processor is usually shared between multiple processes.
The number of processes typically varies dynamically.
Processes can be swapped out to disk to make space – this takes time.
Interrupts can happen at any time – disrupting the flow of operations

Sc
h

ed
u

le
r

1) Memory access times vary depending on type (cache, static, dynamic, virtual
(disk)).

2) Modern processor techniques for performance optimisation such as hyper-
threading, pipelining and pre-fetching branches – makes predictability difficult.

3) Multi-threading and the use of different numbers of processor cores.

4) Processors execute at different speeds – e.g. power saving vs performance
modes. Different clock speeds on different machines means a given piece of
software will run at a different rate on different machines.

5) Software is written in high level languages which are then compiled into
machine or some sort of intermediate code.

Each time the code is changed, the sequence of lower level instructions that are
executed is changed – therefore the timing changes.

What Else Makes Software Less Deterministic?

14

Challenges and Questions for
Sync NFV

15

How Do We Get Suitably Accurate Time Into a VM?

16

VM
running a
guest OS

VM
running a
guest OS

VM
running a
guest OS

• A synchronisation chain requires dedicated hardware
• Virtualising it will not be good enough for most real world applications
• A boundary clock is a hardware function – making use of oscillators, PLL’s etc.
• As soon as we cross into the software domain, things become less predictable.

A Possible PTP Synchronisation Chain

17

Grand
Master

Slave clock
implemented
within a NIC

Chain of
BC’s and/or

TC’s

Server

SW

HW

Virtual
Application

fetches
timestamps

Server Time

Virtualisation Layer

Where is it better
to fetch timestamps
from?

Here we have a HW synchronisation chain – the virtual function
fetches timestamps from the external hardware.

A Possible Hybrid PTP Synchronisation Chain

18

Grand
Master

HW
Boundary

Clock
implemented
within a NIC

Chain of
BC’s and/or

TC’s

PTP Slave
Clock

implemented
as a VNF

Server

SW

HW

Virtual
Application

fetches
timestamps

Server Time

Virtualisation Layer

Here we still have a HW synchronisation chain – but we have a PTP slave clock
implemented as a Virtual Network Function from which the virtual function fetches
timestamps as required.

- To specify the system accuracy we have to measure it.

- The accuracy of the system is only as good as the accuracy of
the measurement.

- The measurement must be traceable to an external reference.

Measurement is the Key

19
This is a really difficult problem

1) Determination of event detection and timestamping accuracy
within a VM

2) Delay characterisation and compensation within a VM

3) How do we measure timing accuracy within a VM?

Some Fundamental Problems to Solve

20

Database

Generic Event Detection and Timestamping Process

21

12

6

39

11.46

Grand
Master

Slave
Clock

Chain of
BC’s and/or

TC’s

PTP Synchronisation Chain

1) Supply a timestamping engine with a
suitably accurate source of time

2) Detect events that are to be timestamped.
E.g. Financial transaction of some description

3) Fetch a timestamp
from the engine and store
it with a record of the
event.

Timestamping Engine

Event Detection and Timestamping in Software

22

While not (event_detected()){
}

Event_Time = get_timestamp();

Loop waiting for an event

When an event is detected, fetch a timestamp.
How long does this take? (What is the delay?)

How long does it take this loop
to execute? (Determines granularity)

How long after the event occurs before the
actual detection? (What is the delay?)

How do we measure the accuracy of a (software) timing system
inside a virtual machine?

How do we probe such a system?

How do we avoid using the system to measure itself?

How can we bring signals from inside a VM to the outside world so
that we can measure them?

The Measurement Problem

23

To measure software systems, they need to be instrumented – typically using
software embedded within the system – therefore the instrumentation has
to be included at development (compilation) time.

But we’ve already seen the problem of fetching accurate timestamps.

The measurement system is entangled with the system it is trying to measure –
the two systems affect each other.

If we want to monitor virtual network packets, we need to provide virtual taps
– but these too affect the performance – copying is a very expensive
operation in terms of time – and how long it takes depends on the length of
the packet.
(A lot of virtual network optimisation depends on so called “zero copy”
operations.)

Measuring Software in Virtual Machines

24

Some Ideas

25

1) Instrument timing critical software in a standard way (e.g. define a
standard API). Of course, this will affect the timing!

2) Define and use compiler directives to report how many machine cycles
are required for timing critical operations.
Use that information at run time for determining delays.

3) Develop (programming and compilation) techniques for keeping time
critical loops and operations as tight and predictable as possible.

4) Use dedicated hardware to provide/support virtual taps (e.g. duplicated
memory) – at the cost of genericity.

Regardless of what we do, software will never be as accurate as hardware –
but maybe for some applications it could be good enough.

How accurate might we be able to make a software PTP
implementation?

How accurately might we be able to transfer and maintain time
within a VM with or without specialised hardware?

How can we solve the measurement problems?

Some Big Questions – Research Needed

26

Summary

27

• NFV is coming, like it or not
• Most major operators are considering it, if not actively planning for it

• Probably the biggest shake-up of telecoms networks since voice-data
convergence 10 years ago

• Synchronization will be affected
• NFV doesn’t remove the need for synchronization, but synchronization

methods will need to evolve

• New models of operation will be established

• New opportunities will be created

• But there are significant challenges to be overcome to
a) Make Sync in NFV good enough for real applications
b) Be able to measure timing inside a VM with sufficient accuracy

• There is much work to do before software can replace
hardware in time critical applications (if ever.)

Summary

28

