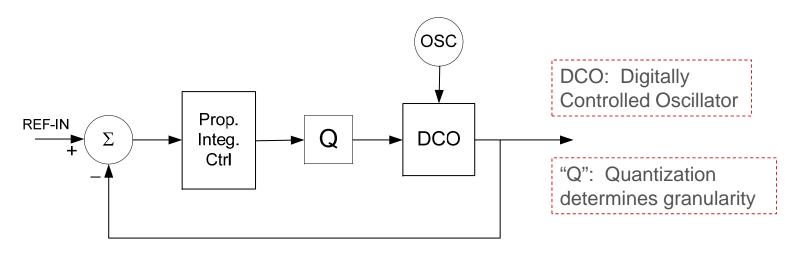


Precise time. Synchronized.

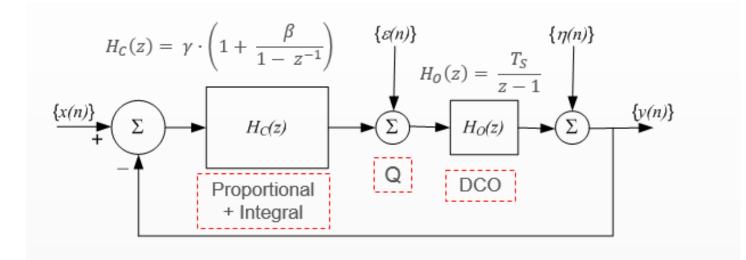
Impact of Oscillator Controllability on System Performance ITSF 2015 Edinburgh, Nov. 2015 Daniel Gallant daniel.gallant@silabs.com


Outline of Presentation

- General Model of a Locked Loop
- Digital Signal Processing View of a Locked Loop
- Packet-based Clocks An Example
- Impact of control granularity on DCO performance
- Concluding Remarks

Simplified view of a locked loop

Locked Loops accept a reference signal


3

- An error is generated by comparing the output to the reference
- A suitable control algorithm (typically proportional + integral) generates a control value
- The DCO control is a quantized version of the ideal control value

DSP view of a locked loop

- Update interval = T_s is equivalent to sampling interval
- The DCO control is a quantized version of the ideal control value
- Quantization (granularity) manifests itself as a noise sequence $\{\varepsilon(n)\}$
- Oscillator also adds noise $\{\eta(n)\}$ (typically white-FM)

4

Analysis of the DSP based Locked Loop

$$H_{xy}(z) = \frac{\gamma T \cdot [(1+\beta)z - 1]}{z^2 - [2 - \gamma T \cdot (1+\beta)]z + (1 - \gamma T)}$$

$$Transfer Function from input (x) to output (y)$$

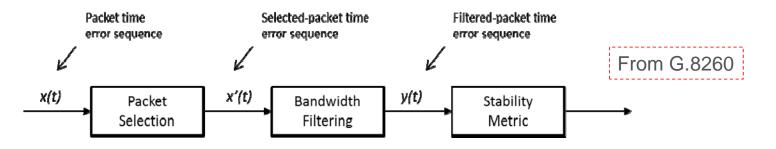
$$Low Pass$$

$$H_{\varepsilon y}(z) = \frac{T \cdot [z-1]}{z^2 - [2 - \gamma T \cdot (1+\beta)]z + (1 - \gamma T)}$$

$$Transfer Function from quantizer (\varepsilon) to output (y)$$

$$H_{\eta y}(z) = \frac{z^2 - 2z + 1}{z^2 - (2 - \gamma T \cdot (1+\beta)) \cdot z + (1 - \gamma T)}$$

$$Transfer Function from oscillator (\eta) to output (y)$$


$$High Pass$$

- Transfer functions determine the behavior of the loop
- From input to output the response is low-pass
- From oscillator to output the response is high-pass
- White quantization noise manifests as white-noise-FM (random-walk phase) in clock output outside the loop bandwidth
- T : sampling interval (loop update interval)

Example – Packet-Based Clock

- "Bandwidth Filtering" achieved with locked loop
- Assume packet selection provides a reference value every 100s (T = 100s)
- With gT = 0.275; b = 0.05; the 3-dB bandwidth is 0.5mHz with 0.2dB gain peaking
- The effective noise-gains for the input reference (noise) and the quantization (noise) are:

$$\sum_{k} |h_{xy}(k)|^{2} = 0.16$$

$$\sum_{k} |h_{xy}(k)|^{2} = 2.1 \times 10^{4}$$
 Granularity amplification!

Granularity Requirement

- Viewpoint #1 (Input Noise)
 - Assume reference input noise (PDV post selection) standard deviation is typically of the order of 1us (1x10⁻⁶)
 - Assume quantization noise effect is one order of magnitude less than the noise in the reference
 - Then quantization noise standard deviation should be less than 0.28x10⁻⁹ or **280 ppt**
- Viewpoint #2 (Holdover)
 - In holdover, the granularity of the DCO affects time error in holdover. To hold 1us in 100,000s (~1day) granularity must be less than 1.0x10⁻¹¹ or 10 ppt

QULSAR Precise time. Synchronized

Granularity Requirement

Viewpoint #3 (TDEV Performance)

 Output performance is defined by TDEV mask. Assuming T = 100s and factor of 10 "margin",

Example: Fig.2 in G.8262 (EEC Option-1), allowed TDEV at 100s is ~6.4ns. This limits granularity (standard deviation) to ~4.4x10⁻¹² or 4.4 ppt

QULSAR Precise time. Synchronized

Concluding Remarks

DCO Granularity is important when implementing DSP based locked loops

An approach to analyzing the constraints on DCO granularity is provided

Typical granularity requirement is between 200 ppt and 4 ppt

QULSAR Precise time. Synchronized

