VERIFICATION OF LAST INCH ARCHITECTURES FOR CORRECT-BY-CONSTRUCTION_TIMING

0

John C. Eidson, et.al. ITSF-2015

www.calnexsol.com

Calnex

Acknowledgements

Co-authors:

- Aviral Shrivastava, Arizona State University
- Hugo Andrade, National Instruments
- Patricia Derler, National Instruments
- Ya Shian Baboud, NIST Gaithersburg
- Marc Weiss, NIST Time and Frequency
- Kevin Stanton, Intel Corporation

Overview

- "Correct-by-construction" temporal semantics
- Reminder of an existence proof
- What will it take?
- Testbed proposal
- Conclusions

What is meant by timing that is "correctby-construction"?

Designers of embedded systems, especially distributed embedded systems, should be able to design, simulate, and code generate for multiple targets with guaranteed timing!

How is timing achieved today?

- One current method is carefully constructed bounded-WCET code plus extensive testing followed by frozen design and implementation
- All timing in hardware e.g. FPGA
- Potential "correct-by-construction" techniques:
 - Time triggered architectures e.g. PROFINET
 - PTIDES-like architectures (see next two slides)

"Correct-by-construction" restrictions

- Requires bounded temporal density of I/O and network traffic (closed world)
- Requires bounded WCET and network latency
- Timing enforcement is done in hardware timing primitives.
- Code timing is not strict except for bounded WCET.

Timing Primitives

John C. Eidson, ITSF , Edinburgh, Nov. 2-5, 2015

To achieve a correct-by-construction design environment, we must sort out this mess!

John C. Eidson, ITSF , Edinburgh, Nov. 2-5, 2015

And on a real board this stuff looks like this

The Testbed

The purpose of the "correct-by-construction" timing testbed is to:

- Facilitate R&D, proof of concept, and collaboration in timing methodologies and design environments
- Allow comparison and verification of design alternatives.
- Explore metrics and test methods

Testbed Architecture

Testbed CPS Node Architecture

The Testbed "Hello World" examples

To shorten the learning curve in using the testbed we propose two hello world examples:

- A time triggered implementation
- A Ptides implementation

Both will implement the same applicationtentatively measuring and adjusting the phases of two legs of a mock power grid prior to interconnection.

Conclusions

- There is still a lot of work to do before we have correct-by-construction timing
- The proposed testbed will enable more rapid progress particularly in the areas of:
 - Designs for hardware support of explicit time,
 - Designs for true real-time operating systems,
 - Languages, compilers, and other software development infrastructure,
 - Techniques for exploiting explicit time in applications.

Thanks for your attention!