



## Time for Gaming

Hugh Melvin, National University of Ireland, Galway
Padraig O Flaithearta, National University of Ireland, Galway
Peter Pocta, University of Zilina, Slovakia
Lea Skorin Kapov, University of Zagreb, Croatia
Andrej Zhank, University of Maribor, Slovenia
Javier Sainz Guerra, Innovati Networks, Madrid







### **Some Context**

- EU COST Action
- Autonomous Control for a Reliable Internet of Services
- TAACCS Subgroup



- Time Awareness
  - SDN
  - Gaming







## Layout

- Cloud Gaming
- Time Awareness
  - Game Server
  - Network Timing for SDN
- Case Study Gaming Anywhere







# Anatomy of a Gamer









## **Cloud Gaming**

- Recent evolution in Gaming
  - High growth potential
- Thin client + Fat pipe
  - Game hosted on cloud
  - User client device sends user control-events to server
  - Server replays actions, renders scene and streams data flow video to client
  - Client displays scene
- Online connectivity critical







## Cloud Gaming- Benefits

#### Users

- Reduced software/hardware specification → lower cost
  - Eg. Run on resource constrained devices/ in browser etc
- Multiplatform
  - PCs, laptops, tablets, and smart-phones

### Developers

- Easily support more platforms
- Reduced hardware/software incompatibility issues
- Reduced production/version control costs







# Gaming QoE 2

- User QoE core requirements
  - High quality graphics + High interactivity
    - High FPS/Resolution → High Bandwidth
    - High interactivity → Low + stable delay
      - Multiplayer → Delay equality important
  - More suited to certain Game types
    - First Person Shooter < 100 ms ideally</li>
      - Significant challenge for widely distributed scenario







## Lag



Games don't make you violent, lag does.

```
Reply from <server>: Bytes=32 Time=30ms TTL=51
Reply from <server>: Bytes=32 Time=120ms TTL=51
Reply from <server>: Bytes=32 Time=625ms TTL=51
```

Save our kids, Install faster internet.





# Latency & Precision for Gaming<sub>3,4</sub>



Shorter deadline to complete action







## Lag<sub>1</sub> = Response Delay

- Response delay (RD)
  - time diff between a user submitting a command and the corresponding in-game action appearing on the screen
- Processing delay (PD)
  - time required for the server to receive/process a player's command, encode/ transmit the corresponding frame
- Playout delay (OD)
  - time required for the client to receive, decode, and render a frame on the display
- Network delay (ND)
  - Round Trip Delay
- RD = PD + OD + ND







## Lag & QoE









### Phase 1 –Server side

- Monitor Model Manage
- Process
  - Realtime network delay (ND) calculations
  - QoE model : delay ←→ QoE
  - Server side delay management









### Phase 2 –Network side

- Monitor Model Manage
- Process
  - Realtime network delay (ND) calculations
  - QoE model : delay ←→ QoE
  - SDN Controller Traffic prioritisation
- Previous research
  - Timing for QoS over WiFi for VoIP













## Timing for VoIP QoS



Synch Time for delay measurement over standard WiFi





# iAP Concept – Delay Optimisation









### ...applied to ITU-T E-Model









## Experimental test-bed







### iAP Mechanism

- 1. Identify individual VoIP sessions
- 2. Calculate one-way (and intra-one-way) delay for each session
- 3. Calculate each way QoS R-factors for each session
- 4. Run prioritization algorithm for VoIP sessions
- 5. Implement session prioritization on AP downlink
- 6. Remote management SDN







### iAP Architecture – Delay calculation









### iAP – Full Architecture







### Moving towards SDN









## Moving towards SDN







## SDN - Gaming



















## Case Study: Gaming Anywhere

- Open source Cloud Gaming Platform
  - Released 2013
  - <a href="http://gaminganywhere.org/">http://gaminganywhere.org/</a>
- Platform for
  - Researchers
  - Game Developers







## Gaming Anywhere<sub>1</sub>



Figure 2: A modular view of GamingAnywhere server and client.







### GA – Time Awareness

- Control Flow
  - User events sent to server
- Data Flow
  - Video streaming from server to client
- Use of RTP/RTCP
  - Facilitates delay measurement via NTP
  - Similar to SDN approach









## **QoE Optimisation**







## References

- Chun-Ying Huang, Cheng-Hsin Hsu, Yu-Chun Chang, and Kuan-Ta Chen, "GamingAnywhere: An Open Cloud Gaming System," Proceedings of ACM Multimedia Systems 2013, Feb, 2013
- 2. Chun-Ying Huang, Kuan-Ta Chen, De-Yu Chen, Hwai-Jung Hsu, and Cheng-Hsin Hsu, "GamingAnywhere: The First Open Source Cloud Gaming System," ACM Transactions on Multimedia Computing, Communications and Applications, Vol 10, No 1s, Jan, 2014
- 3. Five Considerations for Building Online Gaming Infrastructure from <a href="http://www.internap.com/resources/five-considerations-building-online-gaming-infrastructure/">http://www.internap.com/resources/five-considerations-building-online-gaming-infrastructure/</a>
- 4. Claypool, Mark and Kajal Claypool, "Latency Can Kill: Precision and Deadline in Online Games", the Association for Computing Machinery. 2010.

