

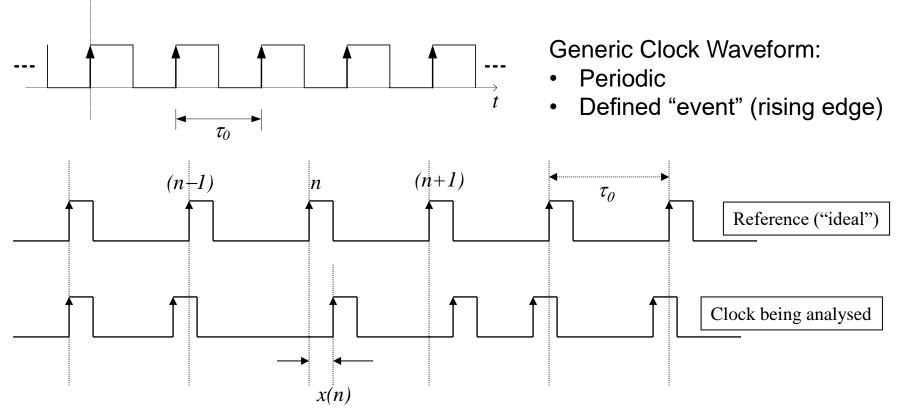
TDEV – Then and Now ITSF 2015 Edinburgh, Nov. 2015

Marc Weiss <u>mweiss@NIST.gov</u>

Kishan Shenoi <u>kshenoi@qulsar.com</u>

Presentation Outline

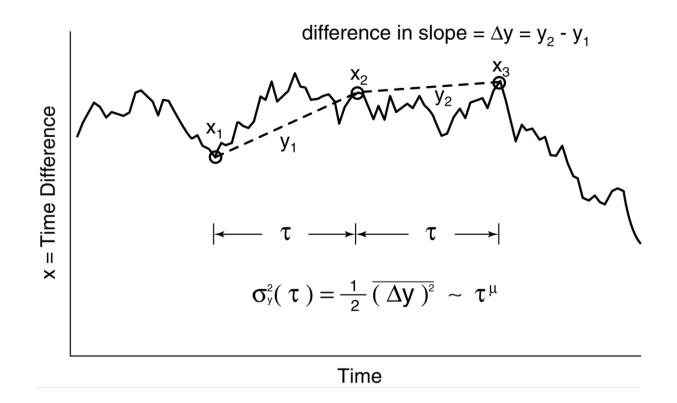
TDEV Then...computed on time error measurements


- Origins of ADEV, MDEV, and TDEV
- Why is TDEV so useful?

TDEV Now...computed on packet-based time error sequences

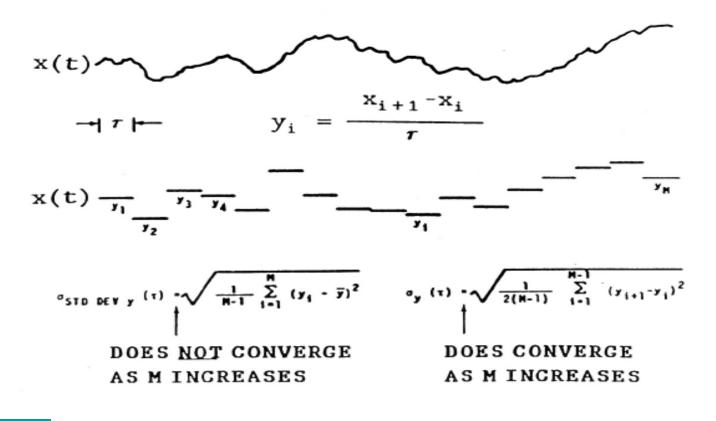
- Packet-based formulations for time error
- Examples of Calculations
- Concluding Remarks

Time Error

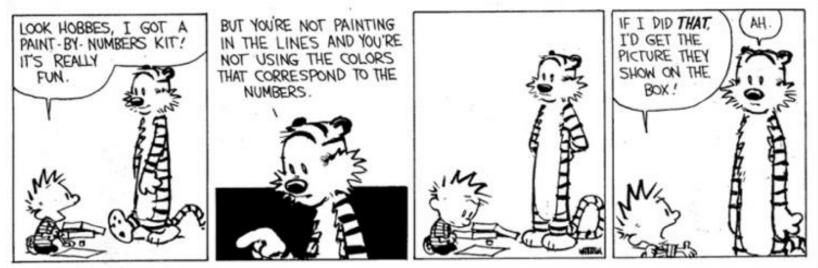


Time error x(n) = time difference between the nth event of the clock under test with respect to the reference clock

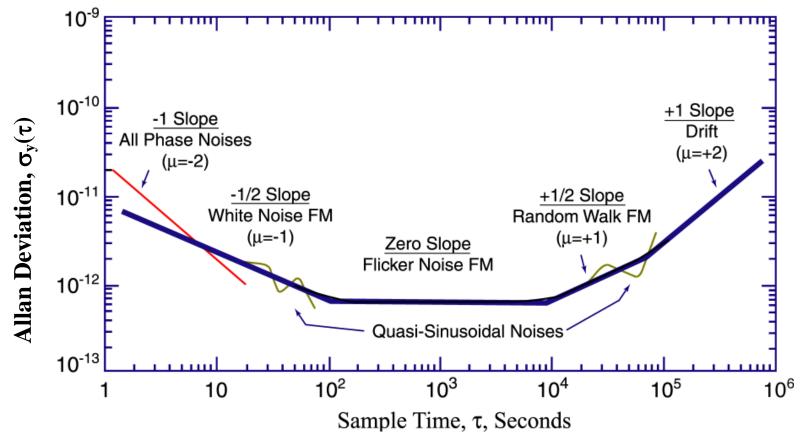
Allan Variance Concept



Stability : Measure of how "constant" is the slope

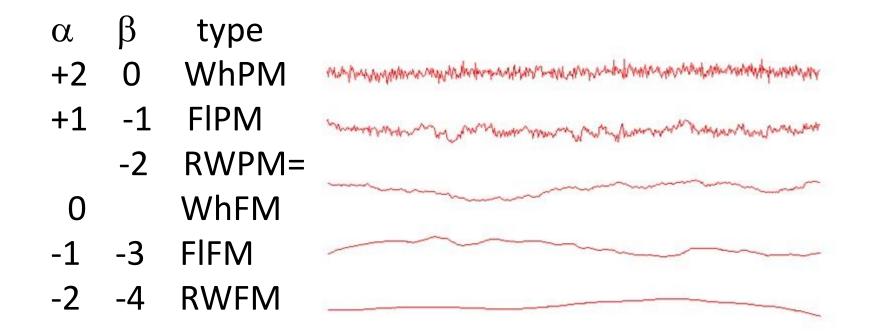


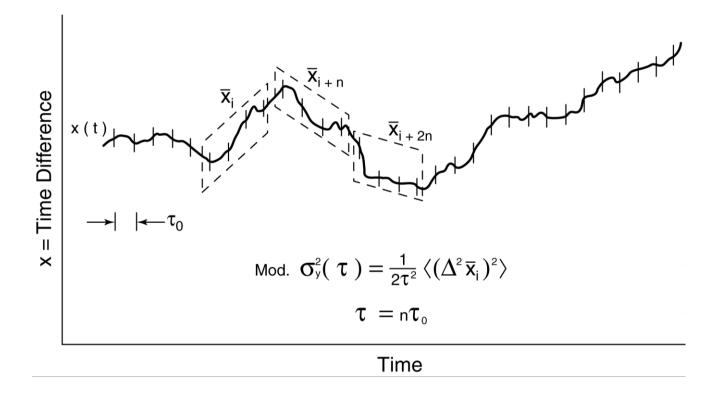
GIVEN THE TIME RESIDUALS FROM A PRECISSION CLOCK OR OSCILLATOR.



There are many types of "Random"

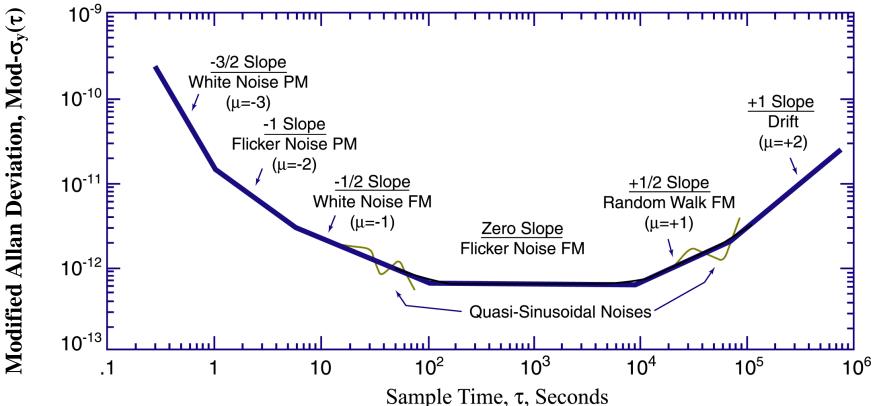
The Standard Deviation may not mean anything.


ADEV Maps the Spectrum for Power-Law FM Noise FREQUENCY STABILITY


7

The 5 Noise Types

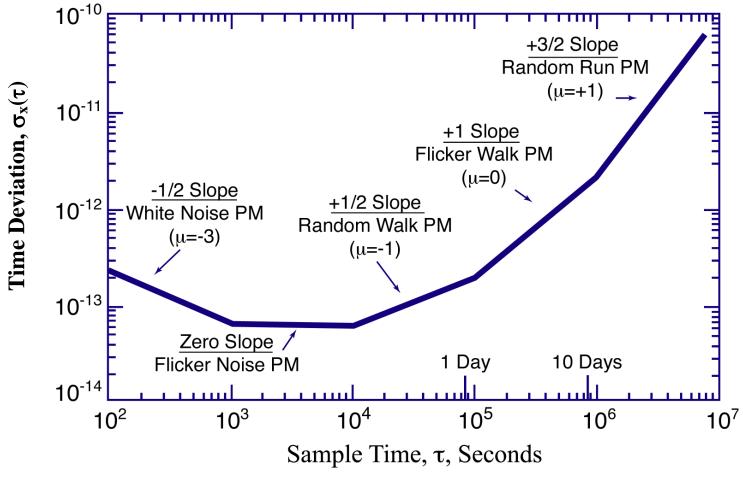
Modified Allan Variance Concept NUSAR



MVAR versus AVAR : Averaging (smoothing) over the observation interval differentiates White Phase Noise from Flicker

MDEV: Now one can see White PM QULSAR

FREQUENCY STABILITY



TDEV makes the focus on PM instead of FM

TIME STABILITY

QULSAR

NIST

Taken from earlier presentations by Dr. Marc Weiss

PAGE 11

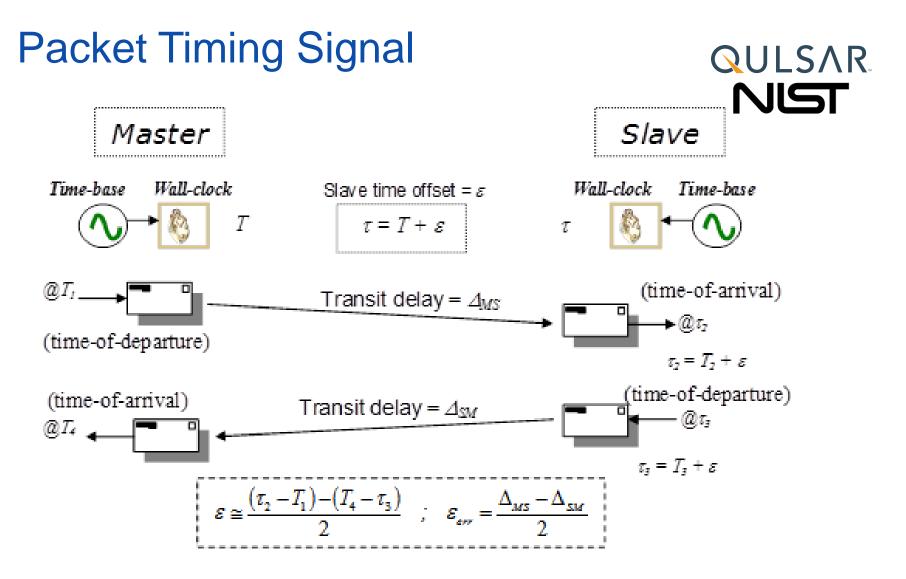
Properties: Noise Types

Relations among Power-Law Spectra and Variances

	$S_{x}(f) \\ \propto f^{\beta}$	$S_y(f) \\ \propto f^{\alpha}$	$ \begin{array}{c} \sigma_{x}^{2}(\tau) \\ \propto \tau^{\upsilon} \end{array} $	$ \begin{array}{c} mod. \sigma_y^{\ 2}(\tau) \\ \propto \ \tau^{\mu} \end{array} $
Noise Type	β	α	υ	μ
White PM (WhPM)	0	+2	_1	-3
Flicker PM (FIPM)	-1	+1	0	-2
White FM (WhFM)	-2	0	+1	-1
Flicker FM (FhFM)	-3	-1	+2	0
Random Walk FM (RWFM)	-4	-2	+3	+1
Flicker Walk FM (FWFM)	-5	-3	+4	+2
Random Run FM (RRFM)	-6	-4	+5	+3
	I	1	TVAR	MVAR

Why TDEV is So Useful for Telecom

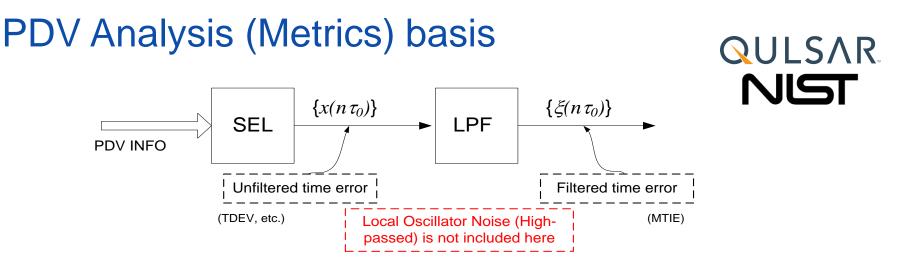
- TDEV, like all of the Allan Variance family, maps directly to power-law spectra
- TDEV focuses on Phase Modulation noise, which dominates telecom
- TDEV, especially with packet selection, matches the way systems respond
 - A PLL will have an averaging time like the reciprocal of the bandwidth
 - The lock time of the PLL will give deviation of the TDEV value


TDEV Then...computed on time error measurements

- Origins of ADEV, MDEV, and TDEV
- Why is TDEV so useful?

TDEV Now...computed on packet-based time error sequences

- Packet-based formulations for time error
- Examples of Calculations


Concluding Remarks

Packet Timing Signal consists of the exchange of time-stamped packets

Conceptual View of Packet Clock

- The packet timing signal is composed of event messages (packet)
- Time Stamp Generator determines the time-of-departure and time-of-arrival of event messages for computing transit delay of packets
- Packet selection involves retaining a representative transit delay for each "window". Selection methods include:
 - Minimum value of transit delay over window
 - Average of the least 1% of the packet transit delays in the window
- A Phase Locked Loop (PLL) arrangement is used to discipline the local oscillator and/or local time-clock based on the representative transit delay
- Proprietary algorithms can be used for improved performance

- The PTP "clock recovery" processing block includes non-linear operations such as packet selection
 - TDEV can be computed on post-selection data
- The PTP "clock recovery" processing block may include lineartime-invariant operations such as low-pass filtering
 - MTIE computed on post-filtered (synthetic low-pass filter) signal
 - Post-filtered TDEV can be derived from TDEV computed on post-selection data
- Impact of oscillator not considered here

Estimating Time Dispersion

Optimal prediction of time dispersion for five different noise types

α	Noise Type	Optimum Prediction of Dispersion, rms, at prediction interval τ_p	Asymptotic Time Error
2	White PM	$\tau_p \bullet \sigma_y(\tau_p) / \sqrt{3}$	constant
1	Flicker PM	$\sim \tau_p \bullet \sigma_y(\tau_p) \bullet \sqrt{\ln \tau_p/2 \ln \tau_0}$	$\sqrt{\ln \tau_p}$
0	Random-Walk PM or White FM	$ au_p \bullet \sigma_y(au_p)$	$ au_p^{1/2}$
-1	Flicker FM	$\tau_p \bullet \sigma_y(\tau_p) / \sqrt{(\ln 2)}$	$ au_p$
-2	Random-Walk FM	$ au_p \bullet \sigma_y(au_p)$	$ au_p^{3/2}$

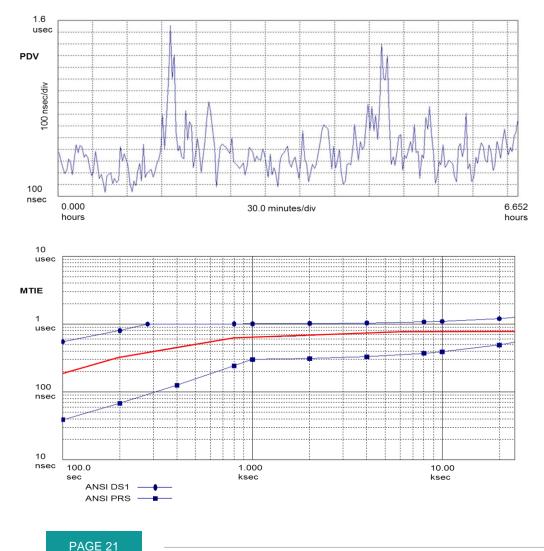
These expressions are in terms of the Allan Deviation : $\sigma_v(\tau)$

Example : APTSC

- Primary Reference : GNSS
- □ While GNSS is active ("valid"):

- Generate output clock (time/frequency) time error < 100ns
- Measure packet-delay variation (PDV) for PTP packets and compute metrics that enable prediction of time-holdover when PTP used to generate output
 - Monitor performance of local oscillator and other references (if available)
- Secondary Reference : PTP
- □ When GNSS is lost ("invalid"):
 - Use PTP timing to control progression of time-clock
 - Alternative: use PTP time-clock (assuming asymmetry calibration)
 - Tertiary Reference : LO / other Reference

Simulated Example of Performance Estimation



Assume:

- Overall time-holdover requirement: 1.5µs
- Budget for GNSS error and switching transient: 500ns
- Holdover using PTP frequency recovery using master-slave direction (*sync_messages*)
 - Packet rate: 32 pps
 - Selection mechanism: 1% over 100s windows
 - Filtering bandwidth: 1mHz
- One possible metric: MTIE
 - Requirement: MTIE(τ) < 1000ns
- □ Simulation:
 - 5 GigE switches
 - Load : mean load = 60% ; standard deviation = 20%

Simulation Example

QULSAR.

Packet-delay-variation (PDV) based on:

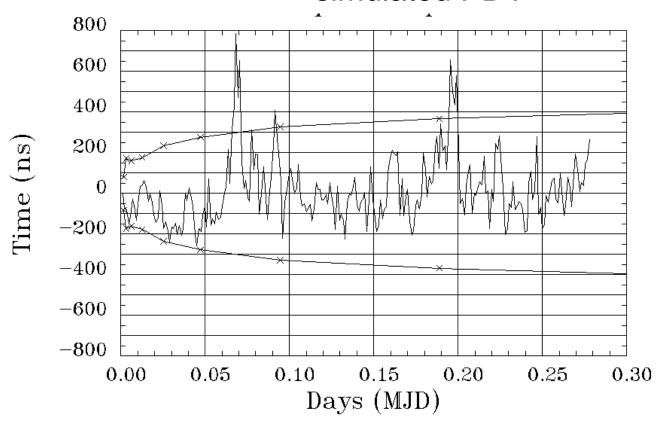
- 1-percentile
- 100s window
- representative transit delay equal 1-percentile average

MTIE :

$$- < 1 \mu s$$

Conclusion:

- With this network PDV, PTP


(one-way-frequency) can support time-holdover indefinitely

- "Alarm" condition: GREEN

Simulation Example

Expected Dispersion based on simulated PDV

Concluding Remarks

- ADEV, MDEV, TDEV are useful tools for analyzing and predicting the performance of timing solutions
- □ TDEV (ADEV, MDEV) provide valuable insight into underlying noise processes, critical for predicting performance
- □ TDEV can be computed on packet-based timing signals
 - Generally includes some packet-selection mechanism
- Packet-based timing signals can be analyzed using TDEV both before and after non-linear processing (packet selection)
- □ Application in APTSC:
 - When GNSS is active the network PDV can be measured and quantified
 - Metrics (TDEV) quantify strength of noise process and estimates of (future) time dispersion if in holdover

Thank you ...

Questions?

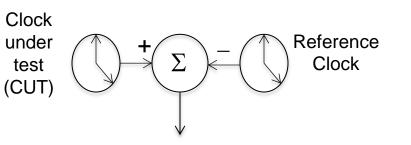
Extra Slides for reference

$$\sigma_y^2(\tau) = \frac{1}{2\tau^2(N-2n)} \sum_{i=1}^{N-2n} \left(x_{i+2n} - 2x_{i+n} + x_i \right)^2$$

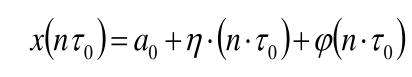
where:

 x_i are the data separated by a time interval τ_0 , $\tau = n \cdot \tau_0$ N is the total number of data points.

Modified Allan Variance for Equally Spaced Time Series:


$$mod. \sigma_{y}^{2}(\tau) = \frac{1}{2\tau^{2}n^{2}(N-3n+1)}$$
$$\cdot \sum_{j=1}^{N-3n+1} \left(\sum_{i=j}^{n+j-1} (x_{i+2n} - 2x_{i+n} + x_{i}) \right)^{2}$$
Smoothing over n terms

where:


x_i are the data separated by a time interval, τ₀,
τ = n · τ₀, and
N is the total number of data points.

Metrics Mathematics

Time error $\{x(n\tau_0)\}$

a₀: constant time error
η: frequency offset
φ: Noise terms ("random")
Frequency drift: lumped into φ

Metrics establish "strength" of time error. Different metrics focus on different aspects of this "strength".

Clock

Error

model

- Maximum absolute time error : $|x(n\tau_0)|_{max}$ is the overarching time error metric (maximum over all time)
- First difference eliminates a_0 : strength of $\{x(n+k) x(n)\}$ quantifies stability of the time error
 - Variations include MTIE, MATIE, TEDEV
- Second difference eliminates η and a_0 : strength of {x(n+2k)-2x(n+k)+x(n)} quantifies stability of the frequency (e.g. TDEV, ADEV, MDEV)

PAGE 28

Computing Metrics on time error

- For a measured time error sequence $\{x(n)\}$ or filtered time error sequence $\{\xi(n)\}$ (commonly proposed b/w: 10 mHz):
 - Max (absolute) time error : $|x(n)|_{max}$
 - cTE... estimate of constant time error: average of N samples
 - Max (absolute) filtered time error : $|\xi(n)|_{max}$
 - MTIE... maximum (absolute) time interval error (stability metric)
 - TDEV... stability metric that describes power (and type) of noise
 - MATIE... maximum (absolute) averaged time interval error
 - MAFE... related to MATIE
 - TEDEV... standard deviation of averaged time interval error
 - Other [e.g. percentile values for maximum and minimum (floor)]