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Introduction

= APTSC Background

= Link Budget

= Possible Metrics

= Defining pktSelectedTE

= Packet Selection, Selection window and Percentile.

= \WWorst-case Simulated and Real Network Profile
Examples.
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APTSC (G.8271.2) Background

= As defined in [IEEE1588], Assisted Partial Timing Support
Clock (APTSC) consists of either an ordinary clock (OC),
with one PTP port, or a boundary clock (BC), with multiple
PTP ports

= An example is a local timing reference (GPS, GNSS)
coupled with a PTP slave clock for failure protection [1].

@ereﬂce (e.g., GNSS signal)
7
’
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Deployment Case

= Network segments can be with or without BC nodes [2].
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APTSC Continue

= For the purpose of this presentation a BC on the network
can be interpreted as a delay and error generation hop.

= The APTS can pass updated timestamps to either an end
application or another PTP slave clock.
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Link Budget Background

= The following figure shows the network limits as seen at the
output of an APTS clock node [4]
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= Based on 100ns PRTC a 200 ns asymmetry is budgeted
averaged over 1000s. This is for accuracy purposes.

= Dynamic time error (PDV + ...) is zero mean and includes
APTS short-term holdover error.
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Metrics

= |n order to meet in particular the dynamic error network limit,
a metric is needed to specify the highest levels of packet
delay variations an APTSC can handle irrespective of
Implementation solution.

= |n the Sep. SG15/Q13 meeting, there is a general
agreement on the following metrics [5]:
* APTS: peak-peak(pktSelectedTE) = max(2wTE)- min(2wTE),.
* PTS: max(pktSelectedTE) = max( |max(2wTE)|, [min(2wTE)| ).

= Packet Selection is an automatic clustering approach that
filters out unwanted packets within a selection window.

= (5.8260: 1.3.2 discusses several packet selection methods:
— Minimum packet (min within window).
— Percentile average packet (order then select average of minimum x%).
— Band average packet (order then select band).
— Cluster range packet (proximity of time vs. index).
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Defining pktSelectedTE

= Given a Sync and Delay req sequences, a packet selection
method Is used to generate a combined 2-way offset
sequence.

= This time-error sequence Is compared against the network
dynamic error limit shown eatrlier.

= Combing is simply done by instantaneous averaging of the 2
paths. Post LP filtering can also be done to mimic the usually
low BW (< 100 mHz) of an APTS node.

= The following diagram (Figure 1.10 G.8260) explains the
approach
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Why pktSelectedTE and not pktSelectedMTIE

= |t has been argued that in order to use the same metric for
both PTS and APTS, it iIs recommended to use
pktSelectedTE.

= Note that in APTS, the GNSS provides a constant time error,
thus only the dynamic error portion is the one that matters.

= This Is not the case for PTS, unless a time-error based
metric is used as opposed to an MTIE metric.

= Atime-error sequence shows more information within
different sliding windows over time and width.

= MTIE sequence ramps up to a maximum value over all time
range.
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Choosing the Selection Window Length

= Selection window length is related to the bandwidth of the
APTS/PTS solution. The window has to get smaller as the
BW increases.

= A window length of 200 s is sufficient for ~ 1 mHz solutions.

= The selection window can be further understood by using a
Time-Dispersion Metric, like minTDisp, which provides a
combined 2-way understanding of the relation between
minOffset and minRoundTrip.

= minTDisp is particularly useful for PTS solutions since time
and phase information is as critical as frequency.
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Packet Selection Method

= Percentile average packet selection method is used on each path
iIndependently with the following parameters

* Window length of 200 s.
* 0.25% of fastest packets

= Thus the candidate data point for each window is the average of 0.25%
of data points.

= |n other words for a 64 pps rate, the time-error point is the average of the
smallest 32 delays. The number is 8 for 16 pps.

= After computing the forward and reverse Selected-Time-Error
sequences, the combined sequence is generated as

Xc'(nt,) = IEI(HI:)_? xg'(nt,)

= Then the max or peak-to-peak values are compared to the network limits
to decide whether the PDVs (network conditions) are suitable for
application as per the standards.
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5-Switch Calnex G.8261 TC12b Network, WinL
= 200s, 0.25% Av. Packet Selection
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Same TC12b PDV with WinL= 100s, 50s.
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pktSelectedTE and 1 us Static phase Offset
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PDV and Packet selection

= Using real lab-generated 5 switch network PDV files proves
challenging for 200 s window and 0.25% percentile average
packet select method.

= The same 5 switch data, passes the network budget using a
window of 200s, however with minimum packet selection
method.

= Note that average packet selection is ML-optimal if the PDV
IS Gaussian, and minimum packet selection is ML-optimal for
exponentially distributed PDVs with equal 2 way means [6],
[7]. Other adaptive techniques are usually deployed for non-
stationary and dynamically varying network profiles.
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Lab-generated 5 switch PDVs, WIinL=200s, 0.25% Av.

Selection (Fall)
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Lab-generated 5 switch PDVs, WIinL=450s, Av.
Packet Selection (Pass)
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Lab-generated 5 switch PDVs, WIinL=200s,
Min. Packet Selection (Pass)
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Summary

= Based on most recent ITU-T/SG15/Q13 meetings:
* The network budget and associated metric was described.
* pketSelectedTE was used as the metric of choice.

* While not completely agreed upon, 0.25% Percentile average packet
selection method is proposed with 200 s window.

= The presentation showed how a 5 switch Calnex generated
80%-20% traffic model 2 with 64/16 pps PDVs can pass the
specified network limits with the proposed selection method
even at lower window lengths (potentially higher solution
BW).

= |t was shown that the proposed selection method caused a
network limit failure when using a 5 switch lab generated

PDV files. Minimum Packet Selection provided a passing
metric with this PDV.
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