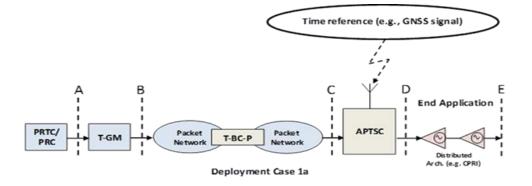
Power Matters

Metrics and Limits for G.8271.2 Unaware Phase Networks

Tariq Haddad, *Sr. Algorithm Engineer* Microsemi Corp +1-613-270-7228 Tariq.haddad@microsemi.com

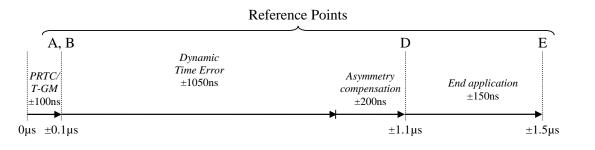

Introduction

- APTSC Background
- Link Budget
- Possible Metrics
- Defining pktSelectedTE
- Packet Selection, Selection window and Percentile.
- Worst-case Simulated and Real Network Profile Examples.

APTSC (G.8271.2) Background

- As defined in [IEEE1588], Assisted Partial Timing Support Clock (APTSC) consists of either an ordinary clock (OC), with one PTP port, or a boundary clock (BC), with multiple PTP ports
- An example is a local timing reference (GPS, GNSS) coupled with a PTP slave clock for failure protection [1].

Network segments can be with or without BC nodes [2].

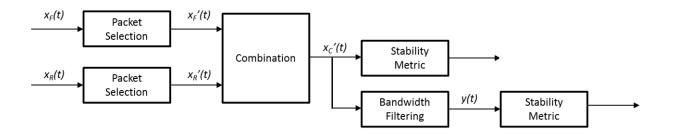

APTSC Continue

- For the purpose of this presentation a BC on the network can be interpreted as a delay and error generation hop.
- The APTS can pass updated timestamps to either an end application or another PTP slave clock.

Link Budget Background

The following figure shows the network limits as seen at the output of an APTS clock node [4]

- Based on 100ns PRTC a 200 ns asymmetry is budgeted averaged over 1000s. This is for accuracy purposes.
- Dynamic time error (PDV + ...) is zero mean and includes APTS short-term holdover error.


Metrics

- In order to meet in particular the dynamic error network limit, a metric is needed to specify the highest levels of packet delay variations an APTSC can handle irrespective of implementation solution.
- In the Sep. SG15/Q13 meeting, there is a general agreement on the following metrics [5]:
 - APTS: peak-peak(pktSelectedTE) = max(2wTE)- min(2wTE),.
 - PTS: max(pktSelectedTE) = max(|max(2wTE)|, |min(2wTE)|).
- Packet Selection is an automatic clustering approach that filters out unwanted packets within a selection window.
- G.8260: I.3.2 discusses several packet selection methods:
 - Minimum packet (min within window).
 - Percentile average packet (order then select average of minimum x%).
 - Band average packet (order then select band).
 - Cluster range packet (proximity of time vs. index).

Defining pktSelectedTE

- Given a Sync and Delay_req sequences, a packet selection method is used to generate a combined 2-way offset sequence.
- This time-error sequence is compared against the network dynamic error limit shown earlier.
- Combing is simply done by instantaneous averaging of the 2 paths. Post LP filtering can also be done to mimic the usually low BW (< 100 mHz) of an APTS node.
- The following diagram (Figure I.10 G.8260) explains the approach

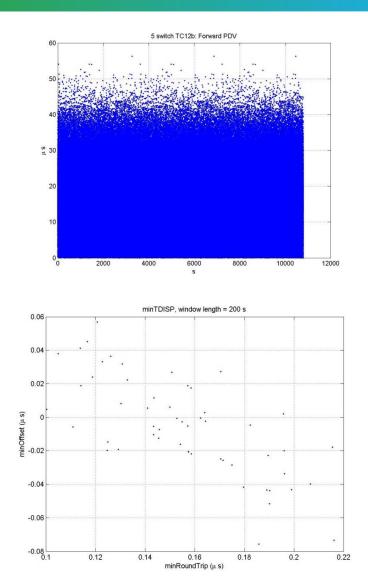
Why pktSelectedTE and not pktSelectedMTIE

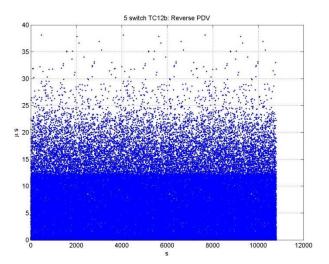
- It has been argued that in order to use the same metric for both PTS and APTS, it is recommended to use pktSelectedTE.
- Note that in APTS, the GNSS provides a constant time error, thus only the dynamic error portion is the one that matters.
- This is not the case for PTS, unless a time-error based metric is used as opposed to an MTIE metric.
- A time-error sequence shows more information within different sliding windows over time and width.
- MTIE sequence ramps up to a maximum value over all time range.

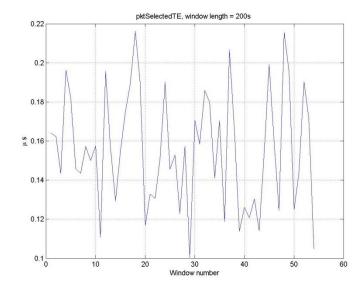
Choosing the Selection Window Length

- Selection window length is related to the bandwidth of the APTS/PTS solution. The window has to get smaller as the BW increases.
- A window length of 200 s is sufficient for ~ 1 mHz solutions.
- The selection window can be further understood by using a Time-Dispersion Metric, like minTDisp, which provides a combined 2-way understanding of the relation between minOffset and minRoundTrip.
- minTDisp is particularly useful for PTS solutions since time and phase information is as critical as frequency.

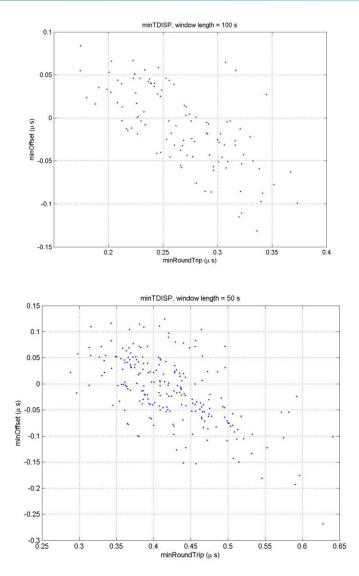
Packet Selection Method

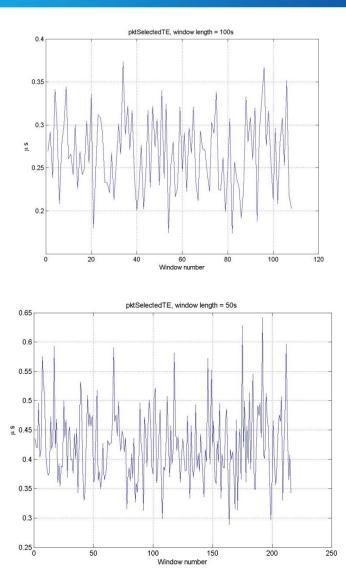

- Percentile average packet selection method is used on each path independently with the following parameters
 - Window length of 200 s.
 - 0.25% of fastest packets
- Thus the candidate data point for each window is the average of 0.25% of data points.
- In other words for a 64 pps rate, the time-error point is the average of the smallest 32 delays. The number is 8 for 16 pps.
- After computing the forward and reverse Selected-Time-Error sequences, the combined sequence is generated as

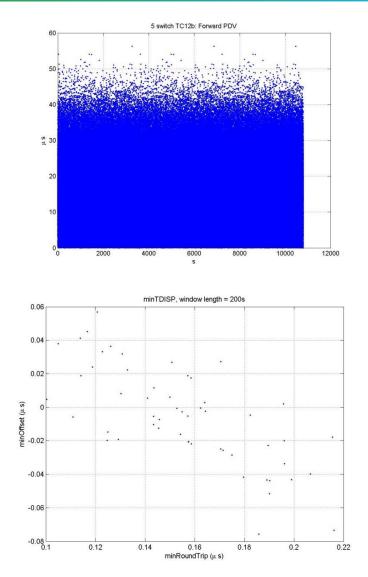

$$x_{c}'(n\tau_{s}) = \frac{x_{R}'(n\tau_{s}) + x_{F}'(n\tau_{s})}{2}$$

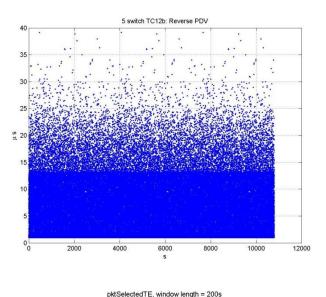

Then the max or peak-to-peak values are compared to the network limits to decide whether the PDVs (network conditions) are suitable for application as per the standards.

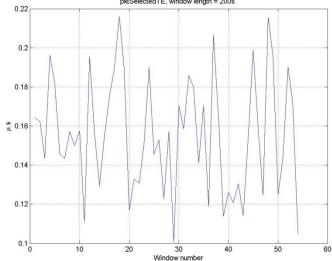
5-Switch Calnex G.8261 TC12b Network, WinL = 200s, 0.25% Av. Packet Selection



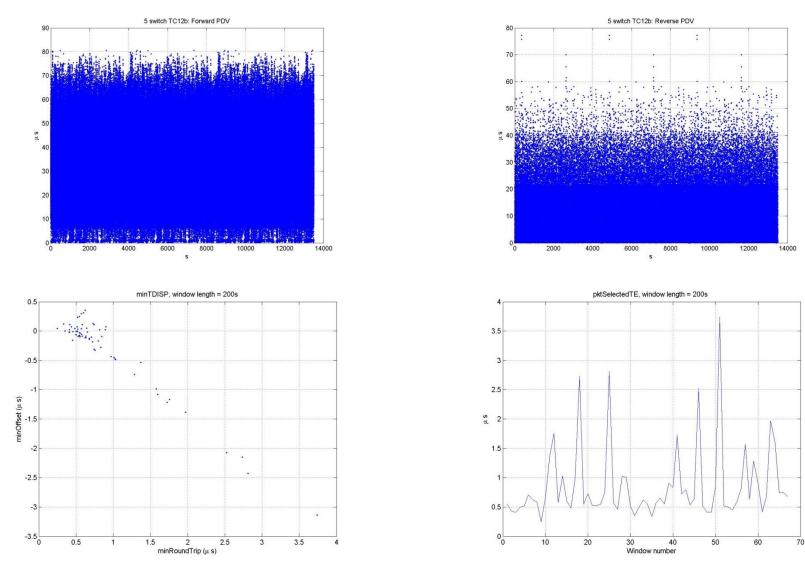



Same TC12b PDV with WinL= 100s, 50s.



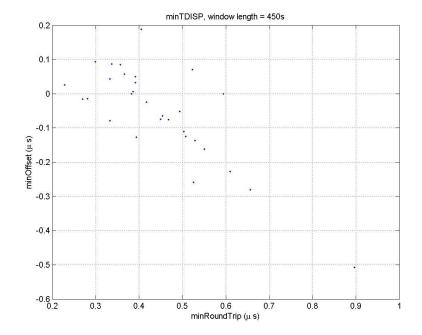


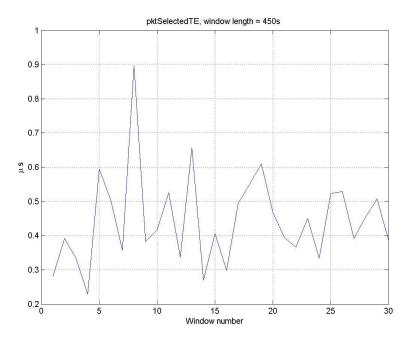
pktSelectedTE and 1 us Static phase Offset

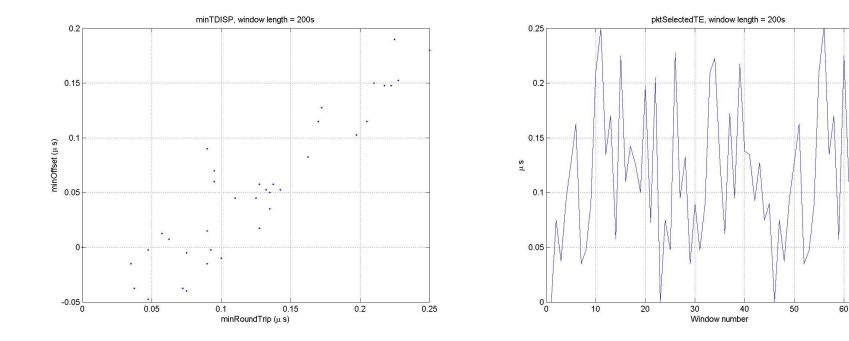


PDV and Packet selection

- Using real lab-generated 5 switch network PDV files proves challenging for 200 s window and 0.25% percentile average packet select method.
- The same 5 switch data, passes the network budget using a window of 200s, however with minimum packet selection method.
- Note that average packet selection is ML-optimal if the PDV is Gaussian, and minimum packet selection is ML-optimal for exponentially distributed PDVs with equal 2 way means [6], [7]. Other adaptive techniques are usually deployed for nonstationary and dynamically varying network profiles.




Lab-generated 5 switch PDVs, WinL=200s, 0.25% Av. Selection (Fail)


Lab-generated 5 switch PDVs, WinL=450s, Av. Packet Selection (Pass)

Lab-generated 5 switch PDVs, WinL=200s, Min. Packet Selection (Pass)

70

Summary

- Based on most recent ITU-T/SG15/Q13 meetings:
 - The network budget and associated metric was described.
 - pketSelectedTE was used as the metric of choice.
 - While not completely agreed upon, 0.25% Percentile average packet selection method is proposed with 200 s window.
- The presentation showed how a 5 switch Calnex generated 80%-20% traffic model 2 with 64/16 pps PDVs can pass the specified network limits with the proposed selection method even at lower window lengths (potentially higher solution BW).
- It was shown that the proposed selection method caused a network limit failure when using a 5 switch lab generated PDV files. Minimum Packet Selection provided a passing metric with this PDV.

References

- [1] C552, ITU-T/SG15/Q13: Budget proposal for Assisted Partial Timing Support, Sprint & Calnex, Geneva, March 2014.
- [2] WD54, ITU-T/SG15/Q13 : Network Limit & Clock Metric Considerations [G.8271.2, G.8273.2], Microsemi, San Jose, Mar 2 – Mar 5, 2015.
- [3] WD10, ITU-T/SG15/Q13: Network limit and metrics of APTS, Huawei Technologies Co., Ltd. Geneva, 22 June – 4 July 2015.
- [4] WD71, ITU-T/SG15/Q13: Network limit for APTS, Nokia Networks, Pisa, Sep 14 – Sep 19, 2015.
- [5] WD105R1, ITU-T/SG15/Q13: APTS PDV limit metric changes to G.8260 and possible parameter values, Pisa, Sep 14 – Sep 19, 2015.
- [6] D. R. Jeske, On the Maximum Likelihood Estimation of Clock Offset, IEEE Trans. On Communications, 53(2005), 53-54.
- [7] E. Serpedin and Q Chaudhari, Synchronization in Wireless Sensor Networks, Cambridge University Press, 2009.

Power Matters

Thank-you

© 2015 Microsemi Corporation. ITSF 2015