

Issues and Challenges Facing Traceable Accurate Time Delivery

Anthony Flavin, MIET

Chronos Technology Ltd

ITSF, Prague, November 1st 2016 – Session 2

Where does time come from

A brief history of time

Ancient Babylonians gave us the Sundial

Recently updated

Increasing precision

A brief history of time (before Optical clocks)

Harrison's H1

Harrison's H5

Caesium Fountain Courtesy of NPL

Is time the same everywhere?

- Equation of Time and Longitude
 - London to Bristol 10 minutes 21 seconds (2.6° west of Greenwich)

http://www.bristolpost.co.uk/city-really-times/story-19967798-detail/story.html

Time Definitions

- Apparent solar time Day approximately 24 hours
- Sidereal time Star observation Day approx. 23:56:04
- Mean Solar time Solar time corrected for seasons
- Greenwich Meantime (GMT 1884)
 - Observation of stars crossing meridian
 - Renamed Universal Time (UT 1928) multiple versions
 - UT0 Observation of diurnal movement of stars
 - UT1 Observation of Quasars and Moon laser ranging. UT1 is the same everywhere on Earth
 - UT1R As UT1 filters out permutations due to e.g. tides
 - UT2 Another smoothed UT1 rarely used now.
- Coordinated Universal Time (UTC 1960)
 - Atomic timescale. Based on SI seconds 86399 86401 seconds per day (usually 86400). Leap seconds keep UTC within 0.9 seconds of UT1
 - Maintained by the International Bureau of Weights and Measures (Bureau international des poids et mesures) – BIPM
 - defined by ITU-R TF.460-6

UTC

- The BIPM in France maintains the international unit for time (the SI second) by averaging data around 60 timing laboratories around the world to generate the UTC time scale.
- BIPM distributes UTC on paper, through a monthly publication called the Circular-T
- Other laboratories maintain physical real-time versions of UTC that are constantly steered to agree as closely as possible to the "official" UTC.

<u>Time – Do you trust your source</u>

"The only time is so everything happen at

eason for that doesn't once."

Source trust & distribution

- Traceable to UTC
 - UTC is a paper clock defined by ITU-R TF.460-6
 - But for realisable time accuracies we can cope with the delay in determining what it was
 - Accuracy \propto

Complexity of delivery

- < 1*us* is achievable with:-
 - Ethernet networks (No Routers)
 - IP networks with Hardware in routers support for PTP
 - Both need Synchronous Ethernet

Practical Time Sources

- Direct connection to National Standard
 - Expensive & distance limited
- Local proxy
 - Provided holdover in event of loss of primary clock(s)
- Galileo / GPS / GLONASS
 - Not always possible or available

Jamming Drive-past

Time Transport

- The time source is never where we need it!
 - Transport introduces new noise sources
 - Dispersion effects
 - Variability (Temperature, Barometric pressure, etc.)
 - Best method
 - Precisely known distances between end points
 - Optical line of sight
 - In a vacuum.
 - **GNSS** achieves much of this
 - But has problems once it hits the atmosphere

Time Transport (1)

Terrestrial options

- Mainly limited to Fibre and Radio
 - Radio suffers usual atmospheric effects
 - But can economically get us to 100's ns region
 - Fibre is dispersive and difficult to obtain
 - Can get us to sub nanosecond on dedicated fibre
 - Can get us to sub micro-second on Ethernet over fibre/WDM
 - Both introduce electronics (more noise)
 - And even worse Non deterministic packet arrival times!

Data Network types

- Point to Point
 - Dedicated fibre Expensive
- Circuit Switched
 - SDH(SONET) Good timing performance (frequency) Legacy
 - OTN Relatively poor timing performance Current
- Packet Switched
 - Ethernet SyncE similar to SDH for frequency Layer 1
 - Ethernet PTP at Layer 2. Large variable asymmetry
- Packet Routed
 - IP NTP Huge variable asymmetry and re-routing delays

Questions you must answer

- How accurately do you need to know the time
- Where do you need to know the time
- What availability do you need
 - Performance
 - Availability
 - Cost

To reach a solution

Source(s)	Transport	Client application
Which Timescale	Delay	Required Accuracy
Location	Delay Asymmetry	Location
Trust	Delay Variation	Required Availability
Duplication	Availability/Reliability	Holdover
Accuracy	Multiple routes	How many sources
	Network type	Quality estimation
		Source selection
Auditing/Calibration	Monitoring	Calibration/Traceability
Cost (Low as shared)	Cost	Cost

http://www.chronos.co.uk/ tony.flavin@chronos.co.uk