(lntel) Look Inside”

Software Access to Precise Time
for Industrial, Automotive, A/V|, Etc.]

Requirements and Approach

Kevin B. Stanton, Ph.D.
Sr. Principal Engineer
Intel Corporation

kevin.b.stanton@intel.com

Abstract: Synchronization needs of Industrial, Automotive,
and A/V differ substantially from those of

telecommunications. Herein we describe some of their

characteristic challenges and approaches, and describe
their relationship to computation.

@ |Time

Stanton | ITSF Prague | November 2016

Need for Precision Timekeeping is Broad

Hard
Deadlines
Automotive Conferencing Realtime A/V Industrial/
Energy
/ N - .

A U g '_ﬂme Sync

S IS enough
Cellular/Telco Financial Cloud/HPC

Some Apps Require UTC Traceability
...Some Do Not
@ |Time

ITSF Prague | November 2016

TSN (Time Sensitive Networking)
TCC (Time Coordinated Computing)

HTSN"
IEEE 802.1Q

| S N | IETF DetNet
IEEE 802.1AS proflle Latency Guarantees,

of IEEE 1588 Seamless Redundancy,
Between |) Ingress Policing, |

Ethernet Preemption, etc. ,
Systems

Timekeeping

Within The
System

ITSF Prague | November 2016

@ [Time

Application Requirements

Latency
(seconds) conerent
© HPC CPUs
o
i
Control
™ Camera
o Fusion
i \Wi-Fi Phasors
S
Speaker Audio

5G
c'é Instrumentation
i s

100 10-3 106 109 10-12 SYyNnC
(Seconds)

gue | November 2016

@ |Time

Scalable Timebase Representation

Each VM
/ CPU Time \
(F;eg‘;efgcc‘; ﬁ Linear transformation between CPU time
e | ~ Tmebgis and other arbitrary time via y=mx+c
orp |M (%) — Here's what's needed:
GM #0 | ¢ . e 1. A Stable HW Reference
- Y 2. Fast*and + Ops
c +
GM #2 @ 3. Precise estimate of mand ¢
o Ce =>» Any Timebase to/from Any
Timebase
m ()

GPS
& aly (5 /

@ |Time

Stanton | ITSF Prague | November 2016

Immediate Software access to “Now” in Linux

Time “now”
(1) clock gettime (CLOCK MONOTONIC RAW, &now);

= Returns current TSC value scaled to nominal nanoseconds

(2) clock gettime (CLOCK MONOTONIC, &now) ;

= Returns current TSC value scaled to track TAl, in nanoseconds

(3) clock gettime (CLOCK REALTIME, &Nnow) ;
= Returns CLOCK_MONOTONIC + (now-1/1/1970) [incl. leap seconds]

Cross-Timestamp
(4) ioctl(phc fd,PTP SYS OFFSET[PRECISE], &offset)

= returns the triple:

- eth ptp time; realtime; monotonic raw
- B PTP
Event Timestamp / Event Scheduling gl;g

= Device Specific

[POSIX: Piecewise-Linear Clock Model: Y[n]=mx[n]+c[n] J

@ |Time

Stanton | ITSF Prague | November 2016

Measuring PTP vs. System Time using PCle PTM

(Precision Time Measurement)

Scenario:

1. Device Driver Triggers Cross-Timestamp

2. Deviceinitiates PTM Request TLP to Root Complex Computer
3. System Time is Returned (delays are compensated) System
4., (PTM Time, PTP Time) returned to Device Driver ef}’Stem
ime
5. Software “disciplines” two variables per clock: m and ¢
P P - B PCle Ryot Complex
Delays Over
: PCle Links and
Cross Timestamps, ‘ | System Time_1 | Swut\r\h through
; Switches
Captured Simultaneously | PTP Network Time | compensated
- |
t2 t3 t2' t3' t2" t3” e‘
& J i \ / L \ »/ Other I/O
ed e ek e b | Device
o oo [pry, delog [gy :
PTM = I ResponseD: ’ ResponseD; | System Time_2 |
: Res"mse"i (@2,13-12)} (2',13 - 12);

PTM . Request . “Request “Request

""""""""" A S S — ©

kt1 t4 t1' t4' t1 t4

[In-System Cross Timestamps =» Time Translation Coefficients]

@ |Time

ITSF Prague | November 2016

*“What Time |s It”
Measurements

Three steps:
- Quickly read free-running CPU counter
- Transform to desired timescale (desired_timescale = m * TSC_value + ¢)

- Periodically update (m, c) using cross-timestamps

Following preliminary data is from:
* CPU: Intel® Core™i5-6600 CPU @ 3.30GHz
 Motherboard: Gigabyte GA-H170M-DH3

Serialized RDTSC Instructions in tight loop. Pseudocode:
e for (i=0; 1 < 20000; 1i++) {

* timestampArray[i++] = clock gettime (CLOCK REALTIME) ;

Stanton | ITSF Prague | November 2016

Graphs show latency for
» Serializing RDTSC

« Store
 [Scaling]
e Index++
 Branch

@ |Time

Non Virtualized TSC Access Latency Histogram

Nothing Bad Happened 19,921/20,000 times

90.1 -

[0

80.1 -

70.1 -
Z] Something Happened
c
Q501 - Q
(o p
o
W 40.1

\

Very Bad Stuff

Happened
(1@92,000 cycles)

Y

30.1 -

20.1 -

10.1 -

0.1

400

800
1200
1600
2000
2400
2800
3200
3600
4000
4400
4800
5200
5600
6000
6400
6800
7200
7600
8000
8400
8800
9200
9600

10000
10400
10800
11200
11600
12000

Access Latency (Cycles)

Preliminary Measurements (inteD) [Time

Stanton | ITSF Prague | November 2016

Direct Read of the TSC (RDTSC) — Log Y Scale

No Hypervisor Present From Virtual Machine
Non Virt TSC Access Latency Histogram KVM Native TSC Access Latency Histogram

100000 - 100000 -

10000 - 10000 -

> 1000 - > 1000 -
Q Q
c c
(1] (1]
3 3
o o
(V] (V]

E 100 - m Frequency E 100 - m Frequency
10 - 10 -
1 rrrrrrrrrrrrrr0rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrT T T T T T T T T TTTT1 1 rrrrrrrrrrrrrr0orrrrrrrrrrrrrrTrrTr T rTrrrrrrrrrrrrrT T T TrTrrT T T TrTroTrTi
WP RGP R EFEOAALDG D PP PSS WP RGP R EFEOAALDG D PP PSS
RDTSC-to-RDTSC Delay (CPU Cycles) RDTSC-to-RDTSC Delay (CPU Cycles)

NOTE: For clock_gettime(CLOCK_REALTIME), increases to [67-73] cycles

Preliminary Measurements (inteD) [Time

ITSF Prague | November 2016

Wrong Configuration: Hypervisor Emulates TSC

VMM Emulated TSC Access Latency Histogram

12000 -

10000 -

8000 -

Frequency
N
g

M Frequency
4000 -

2000 -

1380

1620

1860 |

2100 |

2340

2580 |

2820 |

060 |

300 |

3540

3780 |

20

60 |

4500 _

4740 |

4980 _

5700 |

5220 |

1140 |
5460
More =

O o
< <

Access Latency (Cycles)

Preliminary Measurements

ITSF Prague | November 2016

@ |Time

Conclusions

There are many uses for synchronized time - Software

Virtualization need not preclude immediate software access to

accurate synchronized time - but software execution might be
interrupted.

Hypervisor can introduce long time-read delays if misconfigured

@ [Time

November 2016

