

Software Access to Precise Time for Industrial, Automotive, A/V[, Etc.] Requirements and Approach

Kevin B. Stanton, Ph.D. Sr. Principal Engineer Intel Corporation

kevin.b.stanton@intel.com

Abstract: Synchronization needs of Industrial, Automotive, and A/V differ substantially from those of telecommunications. Herein we describe some of their characteristic challenges and approaches, and describe their relationship to computation.

Need for Precision Timekeeping is Broad

Some Apps Require UTC Traceability ...Some Do Not

Stanton | ITSF Prague | November 2016

Application Requirements

(intel)

Scalable Timebase Representation

Linear transformation between CPU time and other arbitrary time via y=mx+c

Here's what's needed:

- 1. A Stable HW Reference
- 2. Fast * and + Ops
- 3. Precise estimate of m and c
- ➔ Any Timebase to/from Any Timebase

Timescale Translation Scales Well

Immediate Software access to "Now" in Linux

Time "now"

- (1) clock_gettime(CLOCK_MONOTONIC_RAW, &now);
 - Returns current TSC value scaled to nominal nanoseconds
- (2) clock_gettime(CLOCK_MONOTONIC, &now);
 - Returns current TSC value scaled to track TAI, in nanoseconds
- (3) clock_gettime(CLOCK_REALTIME, &now);
 - Returns CLOCK_MONOTONIC + (now-1/1/1970) [incl. leap seconds]

Cross-Timestamp

- (4) ioctl(phc_fd,PTP_SYS_OFFSET[_PRECISE], &offset)
 - returns the triple:
 - eth_ptp_time; realtime; monotonic_raw

Event Timestamp / Event Scheduling

Device Specific

POSIX: Piecewise-Linear Clock Model: Y[n]=mx[n]+c[n]

Measuring PTP vs. System Time using PCIe PTM

(Precision Time Measurement)

Scenario:

- 1. Device Driver Triggers Cross-Timestamp
- Computer Device initiates *PTM Request* TLP to Root Complex 2. System System Time is Returned (delays are compensated) 3. System (PTM Time, PTP Time) returned to Device Driver 4. Time 5. Software "disciplines" two variables per clock: <u>m</u> and <u>c</u> PC/le Root Complex **Delays** Over PCIe Links and Switch Cross Timestamps, System Time_1 through Switches Captured Simultaneously PTP Network Time compensated 1 t2 t3 t2' t2" t3' t3' Other I/O LAN Device 3rd PTM 2nd PTM dialog, dialog, PTM PTM PTM System Time_2 ResponseD ResponseD Response (t2', t3 - t2)(t2", t3' - t2') Other I/O 1st PTM PTM PTM DeviceTime Request LAN Request Request PTM dialog τ1 tŻ 't1' ť4' t1" ť4" In-System Cross Timestamps -> Time Translation Coefficients

Stanton | ITSF Prague | November 2016

intel

"What Time Is It" Measurements

Three steps:

- Quickly read free-running CPU counter
- Transform to desired timescale (desired_timescale = m * TSC_value + c)
- Periodically update (m, c) using cross-timestamps

Following preliminary data is from:

- CPU: Intel[®] Core[™] i5-6600 CPU @ 3.30GHz
- Motherboard: Gigabyte GA-H170M-DH3

Serialized RDTSC Instructions in tight loop. Pseudocode:

- for (i=0; i < 20000; i++) {
 - timestampArray[i++] = clock_gettime(CLOCK_REALTIME);

Graphs show latency for

- Serializing RDTSC
- Store
- [Scaling]
- •Index++
- Branch

Direct Read of the TSC (RDTSC) – Log Y Scale

NOTE: For clock_gettime(CLOCK_REALTIME), increases to [67-73] cycles

Wrong Configuration: Hypervisor Emulates TSC

Stanton | ITSF Prague | November 2016

Conclusions

- There are many uses for synchronized time \rightarrow Software
- Virtualization need not preclude immediate software access to accurate synchronized time but software execution might be interrupted.
- Hypervisor can introduce long time-read delays if misconfigured

