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Abstract: Synchronization needs of Industrial, Automotive,
and A/V differ substantially from those of

telecommunications. Herein we describe some of their

characteristic challenges and approaches, and describe
their relationship to computation.
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Need for Precision Timekeeping is Broad
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Some Apps Require UTC Traceability
...Some Do Not
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TSN (Time Sensitive Networking)
TCC (Time Coordinated Computing)

HTSN"
IEEE 802.1Q

| S N | IETF DetNet
IEEE 802.1AS proflle Latency Guarantees,

of IEEE 1588 Seamless Redundancy,
Between | ) Ingress Policing, |

Ethernet Preemption, etc. ,
Systems

Timekeeping

Within The
System

ITSF Prague | November 2016

@ [ Time



Application Requirements
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Scalable Timebase Representation
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Immediate Software access to “Now” in Linux

Time “now”
(1) clock gettime (CLOCK MONOTONIC RAW, &now);

= Returns current TSC value scaled to nominal nanoseconds

(2) clock gettime (CLOCK MONOTONIC, &now) ;

= Returns current TSC value scaled to track TAl, in nanoseconds

(3) clock gettime (CLOCK REALTIME, &Nnow) ;
= Returns CLOCK_MONOTONIC + (now-1/1/1970) [incl. leap seconds]

Cross-Timestamp
(4) ioctl(phc fd,PTP SYS OFFSET[ PRECISE], &offset )

= returns the triple:

- eth ptp time; realtime; monotonic raw
- B PTP
Event Timestamp / Event Scheduling gl;g

= Device Specific

[ POSIX: Piecewise-Linear Clock Model: Y[n]=mx[n]+c[n] J
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Measuring PTP vs. System Time using PCle PTM

(Precision Time Measurement)

Scenario:

1. Device Driver Triggers Cross-Timestamp

2. Deviceinitiates PTM Request TLP to Root Complex Computer
3. System Time is Returned (delays are compensated ) System
4., (PTM Time, PTP Time) returned to Device Driver ef}’Stem
ime
5. Software “disciplines” two variables per clock: m and ¢
P P - B PCle Ryot Complex
Delays Over
: PCle Links and
Cross Timestamps, ‘ | System Time_1 | Swut\r\h through
; Switches
Captured Simultaneously | PTP Network Time | compensated
- |
t2 t3 t2' t3' t2" t3” e‘
& J i \ / L \ »/ Other I/O
ed e ek e b | Device
o oo [ pry, delog [ gy :
PTM = I ResponseD: ’ ResponseD; | System Time_2 |
: Res"mse"i (@2,13-12)} (2',13 - 12);

PTM . Request . “Request “Request
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[ In-System Cross Timestamps =» Time Translation Coefficients ]
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*“What Time |s It”
Measurements

Three steps:
- Quickly read free-running CPU counter
- Transform to desired timescale (desired_timescale = m * TSC_value + ¢)

- Periodically update (m, c) using cross-timestamps

Following preliminary data is from:
* CPU: Intel® Core™i5-6600 CPU @ 3.30GHz
 Motherboard: Gigabyte GA-H170M-DH3

Serialized RDTSC Instructions in tight loop. Pseudocode:
e for (i=0; 1 < 20000; 1i++) {

* timestampArray[i++] = clock gettime (CLOCK REALTIME) ;
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Non Virtualized TSC Access Latency Histogram
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Direct Read of the TSC (RDTSC) — Log Y Scale

No Hypervisor Present From Virtual Machine
Non Virt TSC Access Latency Histogram KVM Native TSC Access Latency Histogram
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NOTE: For clock_gettime(CLOCK_REALTIME), increases to [67-73] cycles
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Wrong Configuration: Hypervisor Emulates TSC

VMM Emulated TSC Access Latency Histogram
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Conclusions

There are many uses for synchronized time - Software

Virtualization need not preclude immediate software access to

accurate synchronized time - but software execution might be
interrupted.

Hypervisor can introduce long time-read delays if misconfigured
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