# Time Sensitive Networking (TSN) Also known as "Ethernet"

Kevin B. Stanton, Ph.D. Sr. Principal Engineer Intel Corporation

<u>Contributor</u>: Michael Johas Teener Retired Broadcom Corporation

Stanton & Teener | ITSF Prague | November 2016



**Abstract:** Standard Ethernet is becoming inherently timecapable. In this talk we provide an overview of the multiple standards and amendments under development in IEEE 802 TSN and elsewhere that promise guaranteed, robust delivery of time-sensitive streams over local area networks, expanded to routed networks by IETF DetNet.







### **Application Domains for TSN**



Time

### **Application Requirements**



(intel)

Time

### **Network Latency**



Even High Priority Traffic Experiences PDV (Packet Delay Variation)

**Most Applications Perform Fine with Large PDV** 



## For Some Applications, Latency has Hard Limits



For Cyber-Physical Systems, *Only* Worst Case Delay Matters



# Latency of Time Sensitive Streams Must be Constant and/or Bounded (and small)



Time



# TSN Miniminizes Packet Latency (and PDV)

Also Delivers Robust, Deterministic Time Accuracy via PTP Profile

| The Challenge                                          | A Solution                                                                        | The Standard      |
|--------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------|
| Need guaranteed time accuracy with redundancy          | IEEE 1588 profile optimized for deterministic accuracy & redundancy               | IEEE 802.1AS-Rev  |
| Packet Delay Variation (and long tail)                 | Globally time-scheduled slots for<br>Time-Sensitive Flows only [+Cut-<br>through] | IEEE 802.1Qbv     |
| Interfering long frames                                | Preempt (& then resume) interfering frames, insert time-sensitive frame           | 802.1Qbu/802.3br  |
| Dropped frame (e.g., CRC error<br>or network reconfig) | Replicate frames on 'n' maximally disjoint paths, remove duplicates               | 802.1CB           |
| "Babbling Idiot" Problem                               | "Police" traffic on switch ingress                                                | 802.1Qci          |
| How to configure the above                             | Path Control and Reservations                                                     | 802.1Qca/802.1Qcc |
| Need guarantees across IP routers                      | Scale Determinism to Routed Networks                                              | IETF DetNet       |





#### IEEE 802.1AS-revision is an update to 802.1AS for

#### Enhanced link support

- Support for \*all\* of Ethernet, including link aggregation
- Probable support for 802.11 "fine timing measurement"
- Other layer 2 links of interest

### Improve performance and usability

- Responsiveness and reliability, support for "one step" links
- Scalable to larger / more difficult topologies
- Timing path selection for maximum accuracy
- Explicit support for centrally-managed systems

### Start the process towards protocol unification

- End the 1588 vs 802.1AS vs NTP confusion
- 802.1 is coordinating with the 1588 revision project
- "High accuracy" modes (working with IEEE 802.3 and 802.11) to support single digit nanosecond synchronization (with architecture to support better in the future).



#### Schedule Time-Sensitive Frames, Eliminate Interference with Guardband

- If an interfering frame begins transmission just before the start of a reserved time period, it can extend critical transmissions outside the window.
- Therefore a guard band equal in size to the largest possible interfering frame is required before the window starts.





#### Preemption (802.1Qbu/802.3br) is a solution

 If preemption is used, the guard band needs to be only as large as the largest possible interfering fragment instead of the largest possible interfering frame.



#### **802.1CB: SEAMLESS REDUNDANCY**



- Identify and Replicate Packets of Certain Flows
- Duplicate frame elimination based on address/traffic class and timing
- Compatible with existing industrial architectures
  - E.g., HSR, PRP
- NOT TRIVIAL!
- IP Flows (Octuple) Defined



Figure 7-1—Compound Stream built from four Member Streams

## SDN-style Configuration of Schedules, Redundancy



Image source: P802.1Qcc/D0.3

# Realtime Application Protocols Can Share the Wire With Standard IT Traffic



1⁄5



#### The Foundation of Avnu: Our Members



16



# Summary

TSN builds on 1588 and 802.1 AVB, adds tools for

- 1. Redundancy
- 2. Fault Tolerance
- 3. Zero Packet Loss
- 4. Fixed (and low Latency)

Deployment led in Automobiles and Industrial Applications

