

# **ITSF 2017**

'The reality for Time and Phase synchronization within the Mobile Network Operator to address the LTE-A'



Pedro Antao | 7/NOV/2017



# 'The reality for Time and Phase synchronization within the Mobile Network Operator to address the LTE-A'

**NOS Synchronization Network** 

Plans to address the LTE-A +/- 1.5us phase requirements

Ongoing trials and network developments





### **NOS Synchronization Network**



# **NOS Radio Access Network footprint**

# 3100 RAN sites (GSM, UMTS, LTE\*)FDD

63% Gigabit-Ethernet

30% MW-Ethernet

5% leased ETH

2% EFM



... Fiber in major urban areas / MW in rural areas



## **NOS Mobile Backhaul**

RAN leverage on MBH for sync, no GPS

### Wider variety of Backhaul solutions

P2P ETH Fiber Gigabit

P2P ETH Leased Ethernet

CSG within ring topology

MW-ETH tree topologies

Connected to a IP convergent network shared among Cable, FTTH, Mobile, Business, etc.





# IP Network is the "Synchronization Distribution Network"

# Convergent IP Network for Data & Sync

## 4 x L1 Centralized Synchronization POPs:

GNSS GPS and Galileo SyncE references for IP Network PTP GMs G.8265.1; *T-GM G.8275.X* 

# SyncE distribution through IP network layers:

IP CORE, IP EDGE, IP PreAgregation, and IP PreAGG-Lite, using Fiber or DWDM 100G, 10G, and 1G links



#### **NOS Synchronization Network**



GNSS

RAN devices are usually bellow 6 hops from the sync reference, except where MBH use Microwave Ethernet Radios Links.





SyncE support in all the nodes within the Ethernet distribution chain

PTP G.8265.1



### **NOS Synchronization Network**



# TIE measurements from live network using Synchronous Ethernet







# Solutions to enable phase & time being considered in the RAN



At the current being it is obviously that PTP ITU-T profile G.8275.2 is a seriously alternative to the GNSS in the cell site, in the counterpart the G.8275.1 is loosing attractivity.

#### Plans to address the LTE-A phase requirements (+/- 1.5us TE)



# PTP G.8275.1 ETH L2 MCAST + SyncE (RAN T-TSC)







- Standards finish in 2014
- Feasible to leverage on centralized T-GM
- Widely accepted by RAN vendors
- Well defined metrics by the ITU-T

- Requires full path support, not easy to achieve due to HW/SW restrictions
- Legacy HW does not support
- Slow start to IP routers vendors to support this profile



# Distributed T-BC-P G.8275.2 (RAN T-TSC-P)





- Asymmetry are more likely due to IP routing issues among parallel paths
- · Metrics are not well defined yet
- More risky to leverage within centralized T-GM deployment
- Despite being standardized two years later than G.8275.1, it is already implemented and supported by a wider variety of equipment vendors
- Does not requires full time path support



# PTP G.8275.2 APTS (RAN T-TSC-P)





- Distributed Small/Mid size T-BC-A in the EDGE and/or Pre-AGG layers to provide higher scalability
- APTS use the distributed GNSS reference, and centralized T-GM for backup with real time asymmetry correction

#### Plans to address the LTE-A phase requirements (+/- 1.5us TE)



### **GNSS** receiver in the RAN



- Does not require synchronization features from IP/Transport Network
- Easier to achieve +/- 1.5 us TE

- Risk of jamming
- Installation and maintenance costs



Ongoing trials and network developments to deploy phase within NOS network



PTP G.8275.1 trials, we have found a TE > +/- 1.5us versus

**GNSS**, due to DWDM asymmetries

RAN site A and RAN Sites B,C,D have a 7us TE

DWDW path T-GM#1<>COI2 TE=+2.9us
Dynamic asymmetry= 45ns



DWDW path T-GM#1<>COI1 TE=-4.1us

**Dynamic asymmetry= 60ns** 







# Challenges

### How to minimize the asymmetries introduced by the DWDM

- ➤ Re-engineer the DWDM non-coherent to coherent network, and use HW with Sync Time-Stamp
  - ... to evaluate!
- ➤ Use asymmetry correction in the IP transport network, but requires asymmetry correction features within the T-BC
  - ... requires field measurement in every hop, does not scale!

## To workaround the DWDM asymmetries, a good approach seems to be:

Deploy G.8275.2 T-BC-A where it is needed (when DWDM non-coherent links are used)

#### Ongoing trials and network developments to deploy phase within NOS network



## PTP G.8275.2 Lab trials

Max TE -500ns, max dynamic TE to be investigated

> Stability of the solutions implemented in the RAN





PTP results achieved using 128pps Sync Message rate

#### Ongoing trials and network developments to deploy phase within NOS network



# PTP G.8275.2 Next Steps

- > Live deployments using centralised T-GM
- > Live deployments using distributed T-BC-A for asymmetry correction

### **Distributed G.8275.2 T-BC provides**

- Dynamic asymmetry correction to compensate DWDM or other existing asymmetries
- Enhance the PTP slave capacity within the network;

Leverage in the centralized L1 T-GM for GNSS redundancy





## **RESUME**

### Deploy Phase & Time without GNSS receiver in RAN sites requires:

- Full understanding from the IP/Transport Network: synchronization features, synchronization accuracy, topology
- One solution does not fit all the use cases, example for NOS use cases:
  - Centralized T-GM G.8275.2 without T-BC-P for Lisbon and Oporto (mainly fiber links without DWDM)
  - Centralized T-GM G.8275.2 plus T-BC-P for regions without DWDM asymmetries;
  - Centralized T-GM G.8275.2 plus T-BC-A for regions with DWDM asymmetries;
  - For the MW clusters, further analysis is required;

'The reality for Time and Phase synchronization within the Mobile Network Operator to address the LTE-A'



# Thank You!