

Optically Pumped Cesium enabling ePRC and ePRTC ClassB

Alain Michaud, ITSF 2017 Varsaw, November 8th, 2017

Frequency time requirements in Telecom **Driven by Mobile Backhaul LTE-A**

Application	Radio Interface		Backhaul	
	Frequency	Phase	Frequency	Phase
CDMA 2000	±50ppb	±3 to 10µs	GPS	GPS
GSM/WCDMA	±50ppb	n/a	±16ppb	n/a
LTE (FDD)	±50ppb	n/a	±16ppb	n/a
LTE (TDD) (large cell)	±50ppb	±5µs	±16ppb	±1.1µs
LTE (TDD) (small cell)	±50ppb	±1.5µs	±16ppb	±1.1µs
LTE-A MBSFN	±50ppb	±1 to 5µs	±16ppb	±1.1µs
LTE-A CoMP*	±50ppb	±500nsec to 5µs	±16ppb	500ns - ±1.1µs
LTE-A eICIC*	±50ppb	±1 to 5µs	±16ppb	±1.1µs

The 500ns at Backhaul level translates into 30ns at core level (ePRTC)

© 2017 ADVA Optical Networking. All rights reserved. Confidential.

2

Standards for primary reference sources

Frequency source		Time source		
Name	ITU-T Rec.	Name	ITU-T Rec.	
PRC	G.811	PRTC	G.8272	
ePRC G811.1		ePRTC-A	G.8272.1	
		ePRTC-B (project)		

3

© 2017 ADVA Optical Networking. All rights reserved. Confidential.

ePRTC G8272.1 – Phase error in holdover

Evolution toward a class-B Holdover

ePRTC Class	Holdover performance
ePRTC-A	100 ns over a <mark>14 day</mark>
ePRTC-B	100 ns over a 80 day (Project) Could also be a tighter error budget over a shorter period.

Class B: will require a frequency accuracy as tight as $1 \times E^{-14}$ and better ! (How to?)

 $\ensuremath{\textcircled{C}}$ 2017 ADVA Optical Networking. All rights reserved. Confidential.

Improving frequency stability with Optical pumping (Versus magnetic deflection)

¹³³Cs atomic energy levels

• Atomic energy states

- Ground states (F=3,4) equally populated
- Excited states (F'=2,3,4,5) empty
- Switching between ground states F by RF interaction 9.192 GHz without atomic selection (no useful differential signal)

- Atomic preparation by magnetic deflection (loss of atoms)
- Atomic preparation by **optical pumping** with laser tuned to F=4 →F'=4 transition (gain of atoms)

 $\ensuremath{\textcircled{C}}$ 2017 ADVA Optical Networking. All rights reserved. Confidential.

Improving frequency stability with Optical pumping

(Versus magnetic deflection)

- Weak flux
 - Strong velocity selection (bent)
 - Magnetic deflection (atoms kicked off)
- Typical performances: ADEV
 - 2.7 x E⁻¹¹ x τ^{-1/2}

- High flux (x100)
 - No velocity selection (straight)
 - Optical pumping (atoms reused)
- Typical performances:ADEV
 - 3 x E⁻¹² x τ^{-1/2}

Available commercial Cs clock products

- Long life magnetic Cs clock
 - Stability : **2.7 x E⁻¹¹** x $\tau^{-1/2}$
 - : 5 x E⁻¹⁴ Floor
 - Lifetime : 10 years

• High performance magnetic Cs clock

- : **8.5 x E⁻¹² x** τ^{-1/2} Stability
- floor
 - : 1 x E⁻¹⁴
- Lifetime : 5 years
- High performance and long life optical clock
 - Stability : **3.0 x E⁻¹² x** $\tau^{-1/2}$
 - floor : 5 x E⁻¹⁵
 - Lifetime : 10 years

ADEV: Allan Deviation 3 generation commercial clocks

© 2017 ADVA Optical Networking. All rights reserved. Confidential.

Decomposition of ePRTC Holdover phase error budget

Origin of Phase error	Note	Required for ePRTC-B
<i>initial phase error</i> GNSS instabilities + Clock stability	+/- 30 ns as per ePRTC G.8272.1 How to use only ± 10 ns ?	High stab. GNSS+ High stability clock
Random Phase excursions (Holdover) White frequency noise + Flicker Frequency noise cesium clock	Higher Stability clocks	Typ. Φ excursion Magnetic Typ. Φexcursion Optical (±20ns)
 (+) Phase drift due to initial clock freq. offset. Which is a function of : Clock stability @Tau> 1 d GNSS stability @Tau>1 d 	Time error As () 100 ms 0 0 0 0 0 0 0 0 0 0 0 0 0	Higher stability GNSS + higher stability clock (long term). Required: Freq. error << 5x E ⁻¹⁴ ePRTC-A Freq. error << 1x E ⁻¹⁴ ePRTC-B
12	© 2017 ADVA Optical Networking. All rights reserved. Cor	nfidential.

As well, faster GNSS technics needed

Thank You

IMPORTANT NOTICE

The content of this presentation is strictly confidential. ADVA Optical Networking is the exclusive owner or licensee of the content, material, and information in this presentation. Any reproduction, publication or reprint, in whole or in part, is strictly prohibited.

The information in this presentation may not be accurate, complete or up to date, and is provided without warranties or representations of any kind, either express or implied. ADVA Optical Networking shall not be responsible for and disclaims any liability for any loss or damages, including without limitation, direct, indirect, incidental, consequential and special damages,

alleged to have been caused by or in connection with using and/or relying on the information contained in this presentation.

Copyright © for the entire content of this presentation: ADVA Optical Networking.