

Synchronisation over the air

Tim Frost, ITSF 2017

Agenda

- Overlapping Coverage Areas
- Synchronisation Over The Air
- Measurement Over The Air
- Conclusions

TDD Synchronisation and Overlapping Coverage Areas

Why do we need synchronisation?

• TDD networks alternate between upstream and downstream transmissions:

 If synchronisation is poor between cells, a neighbouring cell transmission can interfere with UE transmissions:

Synchronisation Requirement

- "The maximum absolute deviation in frame start timing between any pair of cells on the same frequency that have overlapping coverage areas shall be $\leq 3\mu s''$ *
- This is a *phase requirement* (i.e. it is relative to the other cell), not a *time requirement*
- It is normally implemented as a *time requirement* to a *central clock*

Phase alignment $\leq 3\mu s$

Overlapping Coverage

Interference Area

Interference due to

poor synchronisation

What about small cells?

- Small cells are often entirely within a macrocell coverage area
- Synchronisation errors may cause a significant interference problem

eNodeB

Synchronisation Over The Air

Synchronisation over the air

• What if you could synchronise one cell from another?

Cell in "network listening" mode

- "Network Listening" cell synchronises itself to the radio frames coming from a nearby cell that is already synchronised
- Also known as "radio interface based synchronisation" or RIBS

Small cell architectures

• Small cells might obtain synchronisation from overlapping macrocell

Daisy-chaining

- Some cells may be outside the macrocell coverage area
- Daisy chain from neighbouring small cell

What about delay?

- Several methods proposed to compensate for delay between the transmitting and receiving cells
- For example, one method includes two-way signals:

Request to start synchronisation procedure

from round trip time

Measurement Over The Air

Measuring synchronisation over the air

• If radio signals are being used for synchronisation, you'll want to measure them, right?

• Need to compensate for distance from eNodeB when calculating time error

Calnex

Relative phase measurements

• Since phase alignment is the fundamental requirement, measure that too

Conclusions

Conclusions

- Synchronisation over the air is a viable technique for small cells
 - The cellular signal itself becomes part of the sync chain
- Measurement over the air verifies the entire synchronisation chain
- Uses include:
 - Network design verification
 - Installation test
 - Troubleshooting

Insight and Innovation

calnexsol.com

Tim Frost, Strategic Technology Manager, tim.frost@calnexsol.com