

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

## ELSTAB electronically stabilized fiber optic system for time and frequency distribution with picoseconds accuracy

Łukasz Śliwczyński, Przemysław Krehlik

AGH University of Science and Technology, Krakow, Poland

with support from:

Helmut Imlau (Deutsche Telekom) and Harald Schnatz (PTB)

IFTS 2017, 6 - 9 November, 2016, Warsaw, Poland

www.agh.edu.pl



- 1. International projects related to fiber T/F distribution
- 2. General idea of T/F distribution
- 3. Fiber optic T/F distribution
- 4. Electronically stabilized fiber T/F transfer with ELSTAB
  - idea
  - time transfer calibration
- 5. Experimental results & implementations
  - PIONIER related links in Poland
  - OTT with Deutsche Telekom and PTB
- 5. Summary



## **CLONETS – Clock Network Services**

The project aims at partnership building and innovation for high performance time and frequency services over optical fiber networks and to prepare the implementation of such European backbone network.

#### Project structure:

AGH

**WP1**: Definition of key technologies and trends, collecting information from research infrastructures, NRENs and TF community as information for roadmaps

WP2: Definition of technology development roadmaps and strategic agenda, developing of global vision for TF services over fiber in Europe, leading to pan-European roadmaps and deployment strategies
 WP3: Identification of additional applications and markets utilizing TF transmission over fiber

WP4: Impact, training and dissemination of project results.



Project CLONETS received fundings from EU's HORIZON 2020 research and innovation programme under grant agreement 731107 and is being realized in years 2017-2019



CLONETS involved 16 partners from 7 European countries, representing 4 main areas: National Metrology Instututes: OBS Paris(FR), NPL(UK), PTB(DE), INRIM(IT) National Research and Education Networks: RENATER(FR), CESNET(CZ), PSNC(PL) Academic Laboratories: AGH(PL), UP13(FR), UCL(UK), ISI(CZ) Industrial: MUQUANS(FR), MENLO(DE), PIKTIME(PL), SEVEN SOL(SP), OPTOKON(CZ)



## International projects related to fiber TF transfer

## OFTEN – Optical Frequency Transfer a European Network

OFTEN project aimed at:

- Fiber connections between European optical clocks
- Assessing and improving stability and accuracy of frequency transfer
- Improving reliability of fiber metrological links
- Operation of long-distance fiber optic links between European Cs fountains
- Facilitating the take up of technology and measurement infrastructure developed within the project by the measurement supply chain an end users (space, geodesy, telecom, etc.

#### Project structure:

WP1: Remote OC comparisons via joint fiber links

**WP2**: Techniques for optical frequency transfer over fiber network

**WP3**: Remote Cs fountain comparisons through optical fiber links

**WP4**: Applications based on fiber optical links for non-NMI end users



OFTEN involved 11 partners from 8 European countries, representing 3 main areas:

National Metrology Instututes:

OBS Paris(FR), NPL(UK), PTB(DE), INRIM(IT), SP(SW), TUBITAK(TR) Academic Laboratories:

AGH(PL), UP13(FR), CHALMERS(SW), CMI(CZ) National Research and Education Networks:

PSNC(PL)



## Introduction

### general idea of T/F dissemination; frequency vs. time





f = 5 MHz, 10 MHz, 100 MHz, optical frequencies (~200 THz)

### Time scale dissemination







Fundamental limit:

time dependence of the propagation delay of the optical fiber

$$\tau_F = f(T) = f(t)$$

thermo optic coefficient

$$\frac{\partial n_g}{\partial T} \approx 1.1 \cdot 10^{-5} \text{ K}^{-1}$$

thermal expansion coefficient



Averaging time  $\tau$  [s]



it's relatively easy to arrange a very symmetric link where delay fluctuations (i.e. phase noise) affects very similarly the forward and backward directions





agrees well with the chromatic dispersion thermal coefficient

 $\frac{\partial D}{\partial T} \approx 4...8 \text{ fs} \cdot \text{km}^{-1} \cdot \text{K}^{-1} \cdot \text{nm}^{-1}$ 



### we need a distributed feedback system where the signal is delivered to the remote end but

actuation is made in a real time at the local end only



| <u>phase stabilization:</u>                                                                                                                       |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $\varphi_{O} = \varphi_{REF} + \varphi_{DF} + \varphi_{A \rightarrow B}$                                                                          |  |
| $\varphi_{\text{RT}} = \varphi_{\text{DF}} + \varphi_{\text{A}\rightarrow\text{B}} + \varphi_{\text{B}\rightarrow\text{A}} + \varphi_{\text{DB}}$ |  |
| if $\phi_{\text{RT}} = 0$ (kept by feedback) then                                                                                                 |  |
| $\varphi_{O} = \varphi_{REF} +$                                                                                                                   |  |
| $ + (\phi_{DF} - \phi_{DB})/2 + + (\phi_{A \to B} - \phi_{B \to A})/2 $ $ \} \cong 0 $                                                            |  |

#### delav stabilization:

 $\tau_{O} = \tau_{REF} + \tau_{DF} + \tau_{A \rightarrow B}$ 

 $\tau_{BT} = \tau_{DF} + \tau_{A \rightarrow B} + \tau_{B \rightarrow A} + \tau_{DB}$ 

if  $\tau_{\text{RT}} = const.$  (kept by feedback) then  $\tau_{0} = \tau_{0} = r_{1} + \tau_{0} = 1/2$ 

$$\begin{array}{c} t_{\text{D}} = t_{\text{REF}} + t_{\text{R}} / 2 + \\ + (\tau_{\text{DF}} - \tau_{\text{DB}}) / 2 + \\ + (\tau_{\text{A} \rightarrow \text{B}} - \tau_{\text{B} \rightarrow \text{A}}) / 2 \end{array} \right\} \cong 0$$

it is also possible to revert this scheme and shift the actuation to the remote end

(this is a bit more complex, however...)



idea of phase stabilization:  $\varphi_{O} = \varphi_{REF} + \varphi_{A \rightarrow B} + \varphi_{C}$  $\varphi_{\text{RT}} = \varphi_{\text{O}} + \varphi_{\text{C}} + \varphi_{\text{B}\rightarrow\text{A}} + \varphi_{\text{A}\rightarrow\text{B}} + \varphi_{\text{C}}$ if  $\varphi_{\text{BT}} = 0$  (kept by feedback)  $\varphi_{\rm C} = -(\varphi_{\rm A \rightarrow B} + \varphi_{\rm B \rightarrow A})/2$ SO:  $\phi_O = \phi_{REF} +$ 







Time is transmitted in ELSTAB by local violations of the phase of frequency signals. These violations are inserted by PPS Embedder and are further decoded by PPS De-embedder. Additional De-embedder in Local Module is used for calibration (see next slides).







### time transfer timing model and calibration



**Basic calibration formulas:** 

$$\tau_{REF \to OUT} = \frac{1}{2} \left[ \tau_{REF \to RET} + \left( \tau_{FIB\_F} - \tau_{FIB\_B} \right) + \tau_C \right]$$

$$\tau_{UTC(k) \to OUT} = \tau_{UTC(k) \to REF} + \tau_{REF \to OUT}$$

Fiber forward-backward asymmetry:

$$\tau_{FIB\_F} - \tau_{FIB\_B} = D_T (\lambda_F - \lambda_B) \pm \frac{4\omega A_E}{c^2} + \tau_{BIR}$$

Local & remote modules asymmetry:

$$\tau_{C} = \left(2\tau_{REF \to OUT} - \tau_{REF \to RET}\right) \Big|_{PATCHCORD}$$

Fully automated calibration is on the way!



## uncertainty budget

|   | uncertainty                                  | sensitivity                | standard              | uncertainty                                                      | uncertain | ity budget | 45                             |                                                                                                                                         |
|---|----------------------------------------------|----------------------------|-----------------------|------------------------------------------------------------------|-----------|------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
|   | source                                       | coefficient                | length<br>independent | length<br>dependent                                              | 50 km     | 500 km     | 40-                            | $\begin{array}{c} \lambda_{F} - \lambda_{B} \\0.8 \text{ nm (100 GHz)} \\0.4 \text{ nm (50 GHz)} \\0.2 \text{ nm (25 GHz)} \end{array}$ |
| 1 | $	au_{UTC(k) \rightarrow REF}$               | 1                          | 5 ps                  | -                                                                | 5 ps      | 5 ps       | [sd] >                         | G.652 fiber<br>D = 17 ps $\cdot$ (nm $\cdot$ km) <sup>-1</sup>                                                                          |
| 2 | $	au_{\textit{REF}  ightarrow \textit{RET}}$ | 0.5                        | 5 ps                  | -                                                                | 2.5 ps    | 2.5 ps     | ainty<br>₀                     |                                                                                                                                         |
| 3 | $	au_{C}$                                    | 0.5                        | 7.2 ps                | -                                                                | 3.6 ps    | 3.6 ps     | 25⁻<br>25⁻                     | G.655 fiber                                                                                                                             |
| 4 | $D_T$                                        | $0.5(\lambda_F-\lambda_B)$ | 5 ps/nm               | $\frac{\partial D/\partial T \cdot \Delta T \cdot L}{\sqrt{12}}$ | 2.1 ps    | 6.1 ps     | n 20 <sup>-</sup><br>15⁻       | $D = 6.5 \text{ ps} \cdot (\text{nm} \cdot \text{km})^{-1}$                                                                             |
| 5 | $	au_{\scriptscriptstyle BIR}$               | 0.5                        | -                     | $LDV \cdot \sqrt{L}$                                             | 0.2 ps    | 0.6 ps     | <b>₩</b><br>00 10 <sup>-</sup> |                                                                                                                                         |
| 6 | $\lambda_F - \lambda_B$                      | $0.5D_T$                   | 5 pm                  | -                                                                | 2.1 ps    | 21.2 ps    | 5-                             | D = 0<br>dispersion compensated                                                                                                         |
| 7 | $A_E$                                        | $2\omega/c^2$              | -                     | $10^{-3} \cdot A_E$                                              | 0.2 ps    | 2 ps       | 0                              |                                                                                                                                         |
| _ |                                              |                            | Combin                | ed uncertainty:                                                  | 7.3 ps    | 23.2 ps    | Ĵ                              | link length [km]                                                                                                                        |



long-distance transfer (>~100km)







#### GUM – AOS link:

420 km of fiber, 117 dB total loss,

operational since January 2012,

*UTC(AOS) - UTC(PL) continuously reported to BIPM, also available online: http://www.optime.org.pl/node/47* 

**IME** project

#### AOS – FAMO link:

330 km of fiber, 85 dB total loss,

operational since December 2014, used for absolute measurements of Polish strontium clock



## ELSTAB system side by side with BIPM METODE calibrator



The UTC(AOS) versus UTC(PL) calibration obtained with ELSTAB and METODE **differs by 0.7 ns**, when calibration uncertainties estimated for both systems are 0.12 ns and 0.8 ns, respectively.



## ELSTAB - implementations

Optical Time Transfer (OTT) with Deutsche Telekom & PTB (PoC I)



#### Goals of Proof of Concept experiment:

evaluate potential feasibility of OTT using ELSTAB technology for supervision of network synchronization

test ELSTAB long-term operation on Deutsche Telekom fiber network

test time transfer between PTB and Deutsche Telekom







# **ELSTAB - implementations** OTT with Deutshe Telekom & PTB (PoC II)

In Phase II:

the experimental PoC I link has been upgraded to operational link

a hub in Hannover has been created for future expansion of the link

extensive calibration tests were performed thanks to redundantt architecture of PoC II link







- In last few years great interest is observed in fiber optic time and frequency transfer, international initiatives on pan-European scale are undertaken to create a working fiber network for such purposes
- Such initiatives joins various groups of institutions from NRENs, telecom, metrological/academic labs and industry
- The main driving force now is high-end metrology and science, but created technology may be successfully deployed for telecom and industrial needs
- ELSTAB is an example of available technology that offers high-performance and reliable dissemination of frequency and UTC-traceable time
- Typical ELSTAB performance shows ADEV of 2...3×10<sup>-13</sup>@1s, decreasing with the slope  $\tau^{-1}$  with increasing observation interval and time calibration uncertainty of 20...50 ps (depending on distance and fiber type)
- ELSTAB has been successfully tested in the field over the distances up to 500 km and over even longer distances in the lab
- ELSTAB technology is continuously evolving in a direction to improve its performance on one hand and to transform it into a plug-and-play (by implementing automatic time transfer calibration) system on the other

## Thank you for your attention

(sliwczyn@agh.edu.pl)