

Accurate time. Worldwide.

The Revolution Evolution of the IEEE 1588 Standard

Doug Arnold Meinberg USA

Agenda

- Backward compatibility
- New **Optional** features
 - Profile Isolation
 - Interdomain interactions
 - Multimaster PTP
 - Common Mean Link Delay Service
 - Special Ports
 - Mixed Multicast/Unicast Operation
 - High accuracy features
 - Security

Backward Compatibility

"The working group shall ensure that the resulting draft has the highest degree of backward compatibility possible with the previous edition of IEEE 1588..."

--- From the Bylaws of the IEEE 1588 Working Group

What Backward compatibility means

- New edition device will not break 2008 edition network
- New features are optional
- Old features work as before

Year	Version number	Backward compatible
2002	1	N/A
2008	2	No
2018	2.1	Yes, with v2

PTP Message Common Header

Table 26—Common PTP message header

Table 18—Common message header									
		\frown							
Bits							Octots	Offect	
7	6	5	4	3	2	1	0	Octets	Oliset
transportSpecific				messageType			1	0	
reserved			versionPTP				1	1	
messageLength					2	2			
domainNumber						1	4		
reserved						1	5		
flagField					2	6			
correctionField						8	8		
reserved					4	16			
sourcePortIdentity					10	20			
sequenceId					2	30			
controlField					1	32			
logMessageInterval					1	33			

Bits	Octets	Offset
7 0 5 4 3 2 1 0		
majorSdoId messageType	1	0
minorVersionPTP versionPTP	1	1
messageLength	2	2
domainNumber	1	4
minorSdoId	1	5
flagField	2	6
correctionField	8	8
messageTypeSpecific	4	16
sourcePortIdentity	10	20
sequenceId	2	30
reserved	1	32
logMessageInterval	1	33

New edition

2008 edition

Profile Isolation

- SdoId = Standardization development organization identity
 - 12 bits in common message header
 - Given out by IEEE Registration Authority
 - Any legitimate standards group could get one
 - 0x00 indicates standard, non-isolated PTP
 - 0x100 indicates IEEE 802
 - 0xFFD, 0xFFE are for experimental use
 - ITU, IEC, SMPTE, IETF, etc.. could each get one
 - Meinberg, University of Illinois, etc.. could not
- Domain
 - Domain 4, Sdold = 0x300, is a different domain than Domain 4, Sdold = 0x301
 - Profile can dictate how the domain numbers associated with that organizations SdoID are used
 - E.g. Domain 0-15 for profile 1, domain 6-31 for profile 2, etc.

Interactions among domains

- Independent domains fed from a single timing source
- Multi-grandmaster PTP
- Multipath PTP
- Time transfer between domains via non PTP mechanism
 - IRIG-B, 1PPS, Backplane
 - Interdomain timing metadata adapter
 - Timing transfers but not protocol (Each domain has own BMCA)
- Common Mean Link Delay service

Interactions among domains

Common Mean Link Delay Service

- Domain agnostic common service
 - PTP instances in node can subscribe to service
- For PTP Nodes which use Peer delay and have PTP instances in multiple domains
- Link delays usually the same in different domains if they have the same second definition

MEINBERG

- For example, BC with many 128 ports and four domains
 - Processing overhead for redundant peer delay measurements costly

No PTP Timing messages

Special Ports

- For transport media with built in timing mechanisms
- For example
 - WIFI
 - EPON
- Standard PTP media independent/media dependent interface defined
 - Transfer time from PTP to special media
 - Transfer time from special media to PTP
- Following lead from IEEE 802.1AS Working Group
- Standard MIMD interface defined
 - Standards Organization could define their own compliant special ports

Mixed Multicast/Unicast Operation MEINBERG

- Sync, Announce are multicast
- Delay Request, Delay Response are unicast
- Cut down on "noise" in multicast address
- Used in IETF draft Enterprise Profile

High Accuracy PTP

- Based on work at CERN
 - White Rabbit extensions to PTP
 - Lead scientist Maciej Lipinski
 - Achieved sub-ns phase synchronization
- Manually configured port states
 - All ports either configured or BMCA, no mixing
- Layer 1 Syntonization
- Asymmetry calibration

Security

Four Prongs

- 1. Recommendations for transport of PTP over IPsec and MACsec
- 2. Security TLV
 - Can be attached to any PTP message
 - Friendly to GDOI and TESLA based key exchange mechanisms
 - Key exchange details outside scope of IEEE 1588
- 3. Recommendations for use of redundancy in network architecture
 - For example, multi-master PTP, multipath PTP
 - Necessary but not sufficient to defeat delay attacks
- 4. Recommendations on the use of monitoring

Security TLV

Even more optional features

- Slave timing measurement TLV for monitoring
 - Pass timestamps to GM or monitoring node to verify timing
- Modular Transparent Clocks
 - For blade or SFP module architecture system
 - "Stepness" now a port property
 - TC ports can change 1-step to 2-step, or 2-step to 1-step
- Standard performance metrics for monitoring
 - Based on mean, min, max, and standard deviation for quantities
 - 15 minute and 24 hour averages
- Not addressed in this edition: standards MIB, YANG

MEINBERG

Summary

- Backward compatibility maintained
 - PTPv2 and PTPv2.1 devices can work together
- Features for robustness and accuracy
 - Profile Isolation
 - Interdomain interactions
 - Security TLV
 - Standard metrics
 - Slave port monitoring

- Features for Accuracy
 - Manual port configuration
 - Calibration
 - Layer-1 syntonization
- Features for flexibility
 - Modular TCs
 - Special ports
 - Mixed multicast/unicast

Accurate time. Worldwide.

Thank you for your attention

Doug Arnold Meinberg USA Doug.Arnold@meinberg-usa.com

Modular Transparent Clocks

- Modular transparent clocks
 - Blade architecture switches/routers
 - SFP modules convert ordinary switches or routers to TCs
- Egress TC ports can update either correction field when Follow_Up present
- Both ingress or egress TC ports can change stepness
 - Create Follow_Up to accompany Sync
 - Combine correction fields in Sync, and drop Follow_Up (New!)
- twoStepFlag indicates message semantics only
 - TRUE means Follow_Up coming
 - FALSE means no Follow_Up
 - Regardless of TC port properties

High Accuracy PTP

PTP Instance-A

Figure 65—Link reference model.

PTP Instance-B

Asymmetry errors removed through calibration of phase differences among various clocks

- Calibration is relative to "Golden Calibrator"
- Scaling to large networks unsolved problem
- Layer-1 Syntonization keeps many phase errors constant so they can be calibrated

Performance Metrics for Monitoring

MEINBERG

- Complete implementation
 - 24 our average of each metric
 - 24 hours worth of 15 minute averages of each metric
 - 37 metrics defined
 - Partial or no implementation allowed
- Based of fundamental statistics for each quantity
 - Average, minimum, maximum, standard deviation
 - Or counters of events
- Examples
 - averageOffsetFromMaster
 - minMeanPathDelay (delay request-response only)
 - maxMeanLinkDelay (peer delay only)
 - SyncRx (counter)