

Tomasz Widomski

It Is Time For Time

From ultra precision sub-nanosecond synchronization until "Trusted time distribution systems with audit and verification facilities" Building Robust Synchronization Systems that are resistant to falsification of time

Four Groups Of Risk Of Possible Time Gaps In Time Transfer

1) GNSS (Internal Err, Jamming/Spoofing)

2) Network (e.g. Time Delay Attack)

3) Leap second support

GNSS Jamming & Spoofing

The Economist

https://www.economist.com/news/international/2 1582288-satellite-positioning-data-are-vitalbutsignal-surprisingly-easy-disrupt-out

Picture available courtesy of company Chronos

True Time is born inside GNSS receiver

- UTC, TAI output TIME calculated on Earth (not in space) based on GNSS stream data
- GPST, GLONASST, BEIDOUT, GALILEOT time differences to UTC/TAI counted in tens of seconds
- GPS SVN#23 13.5 μs error 26/01/2016 BBC
 <u>http://www.bbc.com/news/technology-35491962</u>

- What is a weighted average of GPS, GLONASS, BEIDOU ?
- How does it (if at all ...) correspond to XYZ organization ?

Examples of problems associated with commercial GNSS receiver

- One of leading GPS timing receivers claim for 1s period a 24hour error at midnight, November 29, 2003 (leap second – group 3)
- Another leading GPS t-receiver has reported on December 31, 2005
 23:59:59 instead 23:59:60. Then it rolled over to 00:00:00 on Jan 1, 2006, bringing back in line with UTC (leap second group 3)
- Today at least 4 different modern brands of GNSS receivers that use data from GPS along with the BeiDou were found to implement leap seconds one day to early, because BeiDou (leap second – group 3, but also internal GNSS RCV firmware bug):
 - counts numbers the "days of the week" from 0 to 6
 - while GPS/GALILEO/GLONASS number them from 1 to 7

Examples of time problems associated with systems

ELPROMA

- On February 25, 1991, during the Gulf War, an American Patriot Missile battery in Dharan, Saudi Arabia, due to time error 0.34s at speed 1676m/h. Round-off error was a result of 24-bit fixed point register arithmetic computation
- On August 14, 2003, a Northeast blackout occurred. One of reasons was a software bug known as a "race condition" (effect is ahead of the cause) existed in Unix-based energy management system
- February 2017, a "Time Synchronization Attack" to power distribution and Smart Grid systems has been discussed and it reminds under consideration of DG-ENERGY (EU) experts

New York 2003, August the 14th

Mythbusters

- GNSS receiver is not operating like a Network Interface Card
- Output time at Time Server is not same as input time at Client (Slave) Saying in other words: "Timeservers know nothing about client side time"

- ✓ Autonomous Time Scale
 UTC/TAI Systems
- ✓ Dedicated Solutions

 e.g. DEMETRA TSI#2
 Trusted Time Distribution
 w/ Audit & Verifications

ITSF 2017 "It is time for time "

The project DEMETRA has received funding from the European GNSS Agency under the European Union's Horizon 2020 research and innovation programme under grant agreement No 640658 Galileo Call 1

Horizon 2020 European Union funding for Research & Innovation

European Global Navigation Satellite Systems Agency

#TSI	Description
1	Time broadcasting
	(TV & Radio)
2	Trusted Time Distr.
	(incl. authenticated NTP
	and cryptographic TSP)
3	Time dissemination (PTP-
	White Rabbit ext.)
4	Time broadcasting using
	geostationary satellite
5	Calibration Service for User
	GNSS Receivers
6	Certified Time Steering
7	Time monitoring based on
	the IGS time products
8	Time integrity
	(GNSS satellites clock and
	timescales monit.).
9	Time synchronisation
	service for a scalable
	network of atomic clock

nodes ("SynchroNet")

<u>Consortium</u>:

- 1) INRIM (Italy)
- 2) TAS-F (France)
- 3) TAS-I (Italy)
- 4) ELPROMA (Poland)
- 5) **DEIMOS** (Spain)
- 6) AIZOON (Italy)
- 7) ROB (Belgium)
- 8) ANTARES (Italy)
- 9) METEC (Italy)
- 10) VTT (Finland)
- 11) Politecnico di Torino(Italy)
- 12) VEGA (UK)
- **13) NPL** (UK)

DEMETRA TSI#2 BY ELPROMA

During DEMETRA INRIM-NPL-GUM International tests, the TSI#2 has demonstrated:

Functionality:

- 1. UTC DISTRIBUTION
- 2. CLIENT TIME AUDIT
- 3. RETROSPECTIVE TIME VERIFICATION (VALID/INVALID)
- Accuracy 100 us for LAN (SHORT LOOP TEST)
- Accuracy 10 ms with Internet (END-TO-END TEST)

The synchronized **QKD** ("Synchronized" Quantum Key Distribution) – a QPPS is under considerations to replace modern NTP protocol for UTC distribution /expecting large accuracy & security improvement in the future/

Thank You

info@elpromatime.com www.elpromatime.com