

Global Navigation Satellite Systems GSA/GRANT/05/2017

GALILEO-BASED TIMING RECEIVER FOR CRITICAL INFRASTRUCTURES ROBUSTNESS

International Timing and Sync Forum Brighton (UK) November 7th, 2019

// 1 Date: November 7th, 2019 Ref: GIANO ITSF 2019

© 2019 Thales Alenia Space

2

3

4

5

TIMING USER NEEDS

GIANO TIMING PLATFORM

TIMING SERVICE ROBUSTNESS

GIANO CALIBRATION & VALIDATION

/// 2 Date: November 7th, 2019 Ref: GIANO_ITSF_2019

THALES ALENIA SPACE OPEN

© 2019 Thales Alenia Space

PROJECT TEAM /// KEY ROLES

Consortium is composed by companies, institutions and experts with background and competence in timing applications:

Thales Alenia Space in Italy has multi-year experience in GNSS systems and in the development of GNSS-based products for ground and space applications.

Business Integration Partners is involved in the consortium for user groups interface, dissemination activities, providing its experience in strategic analyses and business modelling.

PIK TIME SYSTEMS

PIKTime Systems is experienced in time-based products and services development and is advisor on precise time, scales and design of time & frequency software algorithms.

Space Research Center of the **Polish Academy of Science** has strong heritage in timing systems, has participated to several European scientific and navigation programmes.

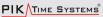
DEIMOS Engenharia a company largely involved in GNSS projects and with deep knowledge and experience in SW and algorithms development for GNSS-based equipment.

GIANO Project Context

" A growing concern exists regarding the possibility of jamming and spoofing GNSS signals, with the consequent disruption of critical services and infrastructures that rely heavily on GNSS timing to operate ... "

Project Drivers

- Fulfillment of specific T&S needs for Critical Infrastructures (health, safety, economic & social welfare).
- Provision of robust timing services for critical users belonging to Energy, Telecommunications, Finance domains.
- Promotion of Galileo & EGNOS use for infrastructures protection, improving GNSS-based timing solutions resilience to RF environmental threats.



INTRODUCTION

2 TIMING USER NEEDS

GIANO TIMING PLATFORM

TIMING SERVICE ROBUSTNESS

GIANO CALIBRATION & VALIDATION

/// 5 Date: November 7th, 2019 Ref: GIANO_ITSF_2019

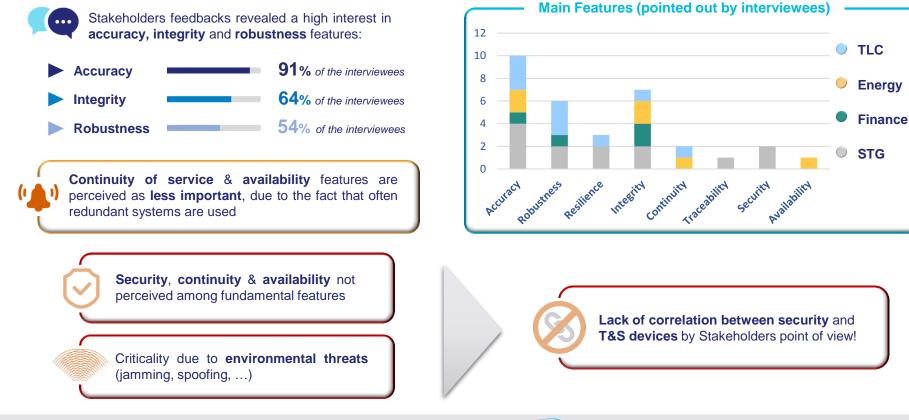
3

4

5

THALES ALENIA SPACE OPEN

© 2019 Thales Alenia Space



TIMING USER NEEDS /// STAKEHOLDERS POINT OF VIEW

Bip

TIMING USER NEEDS /// SCENARIO EVOLUTION

		Current needs	Future needs
ENERGY applications (*between ms and 100 ns")	Energy	PMUs: 1 µs Protection: between 1 ms and 100 ns Control: 1 ms SDH: 1 ms	PMUs: 50 ns Protection & control: order of 1 μs Process bus: between ms and μs
TELECOM applications	TLC	NTP for routing systems synch: ms Timing info source: between ms and µs	5G applications: tens of ns Synchronization: between µs and 100 ns
	Finance	NTP for synch: around 100 µs	-
FINANCE applications	Rail	NTP for synch: around 500 µs	-
Secondary Target Group	Aviation	Time-stamp (radar data, audio record): 1 μs	-
"between 500 µs and sub-ns level"	Research communities	National standard time generation: 1.5 ns Time Dissemination: from ms to ns	National standard time generation: fs-level Time Dissemination: ps-level
See also:	Timing distribution operators	From 10 ns to 500 ps of uncertainty	-
GSA Market Report			See also: GSA Report on T&S User Needs
/ 7 Date: November 7th, 2019 Ref: GIANO_ITSF_2019 THALES ALENIA SPACE OPEN	© 2019 Thales Alenia Spa	Ce ThalesAlenia Bip	

INTRODUCTION

TIMING USER NEEDS

4

5

GIANO TIMING PLATFORM

TIMING SERVICE ROBUSTNESS

GIANO CALIBRATION & VALIDATION

/// 8 Date: November 7th, 2019 Ref: GIANO_ITSF_2019

THALES ALENIA SPACE OPEN

© 2019 Thales Alenia Space

GIANO TIMING PLATFORM /// PROTOTYPE OVERVIEW

INTRODUCTION

TIMING USER NEEDS

GIANO TIMING PLATFORM

4

5

3

TIMING SERVICE ROBUSTNESS

GIANO CALIBRATION & VALIDATION

/// 10 Date: November 7th, 2019 Ref: GIANO_ITSF_2019

THALES ALENIA SPACE OPEN

© 2019 Thales Alenia Space

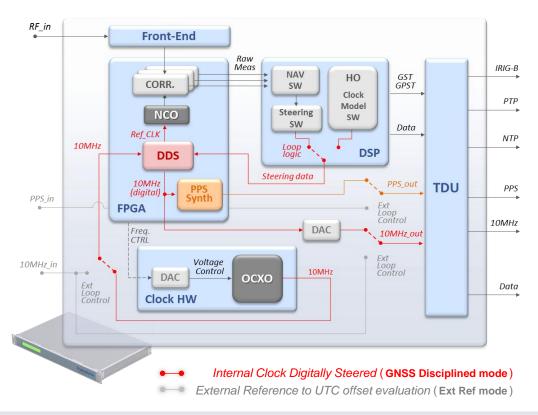
TIMING SERVICE ROBUSTNESS /// KEY DRIVERS

Multi-GNSS and Combined solution capability (GPS, Galileo and EGNOS).
Flexibility and Configurability from single to multi-frequency (L1/E1, L5/E5a).
Tunable bands with innovative Direct-Sampling approach and Digital Down-Conversion.
Synchronization with GST or GPST.

- Jamming & Spoofing detection / mitigation capabilities.
- Use of Galileo OS-NMA authentication service.
- Availability of EGNOS corrections.
- **T-RAIM** algorithm for time solution **integrity** (single or multi-constellation based).
- Accurate Time-Steering and Holdover with transparent output towards user.
- Periodic Calibration or Auto-Calibration capability.

TIMING SERVICE ROBUSTNESS /// SYNCHRONIZATION

Digital Time-Steering Benefits


- Improved timing signal **continuity** & **availability**:
- No transitory / jumps due to lack of GNSS signals
- Smooth convergence & synch recovery after holdover
- Higher level of configurability (FW/SW based approach)
- Solution independent from internal clock model

Early malfunction and anomalies detection:

- Easier maintenance (SW based approach)
- On-demand or continuous integrity monitoring & notification

KPIs for Service Level Agreement monitoring:

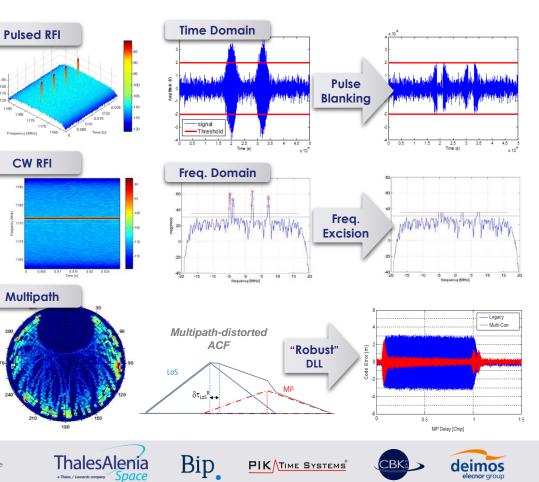
- Synchronization predictions
- A-posteriori synchronization evaluation
- Autonomous time service performance monitoring

TIMING SERVICE ROBUSTNESS /// RF ENVIRONMENT

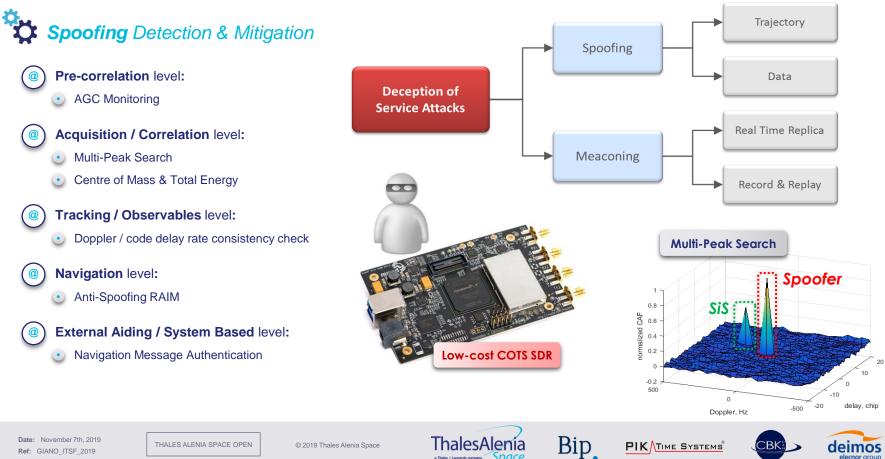
) Antenna level:

- RHCP Gain Roll-off
- Front-End (BPF Bandwidth, LNA, ...)
- **Pre-correlation** level (i.e. in FPGA, based on RFI power before de-spreading):
 - AGC

0

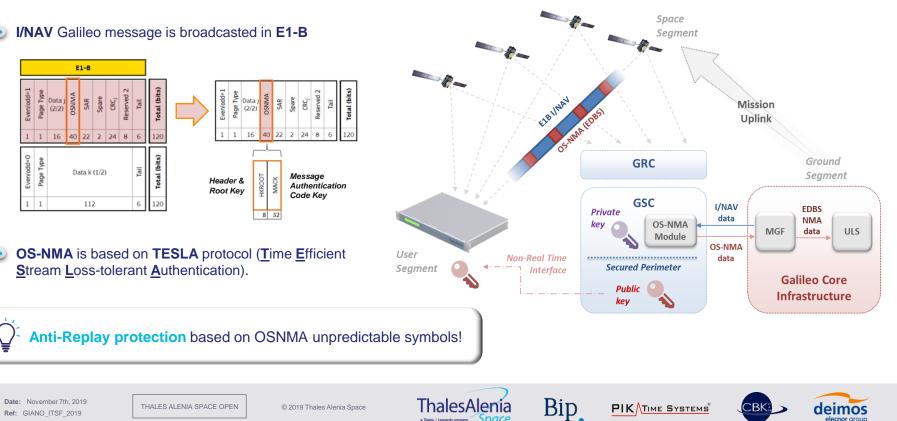

- Digital Pulse Blanking
- Frequency Excision

Multipath Detection & Mitigation


- Antenna level:
 - RHCP-LHCP D/U ratio

) Post-Correlation level (i.e. in DSP):

- Multi-Correlator based DLL discriminators
- **Observables** based (C/N0, CMC, etc.)



TIMING SERVICE ROBUSTNESS /// RF ENVIRONMENT

1 TIMING SERVICE ROBUSTNESS /// AUTHENTICATION

Open Service Navigation Message Authentication (OS-NMA)

THALES ALENIA SPACE OPEN

© 2019 Thales Alenia Space

TIMING SERVICE ROBUSTNESS /// INTEGRITY

T-RAIM Time Solution Integrity Monitoring

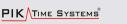
For a typical Timing Receiver, the position is known and static.

Reduced number of unknowns has to be estimated with respect to the full Position Velocity Time (PVT) solution:

- Clock bias
- Clock drift

Redundancy can be exploited to:

- Increase timing solution reliability
- Detect inconsistencies among GNSS observables
- Identify outliers in measurement set


The availability of several GNSS constellations provides a significant opportunity to further improve T-RAIM performance:

- **T-RAIM** for **Single**-Constellation
- T-RAIM for Multi-Constellations

In case of Multi-Constellation T-RAIM, Inter-System Offsets (i.e. GGTO) and Drifts must be carefully handled.

INTRODUCTION

TIMING USER NEEDS

GIANO TIMING PLATFORM

TIMING SERVICE ROBUSTNESS

3

4

GIANO CALIBRATION & VALIDATION

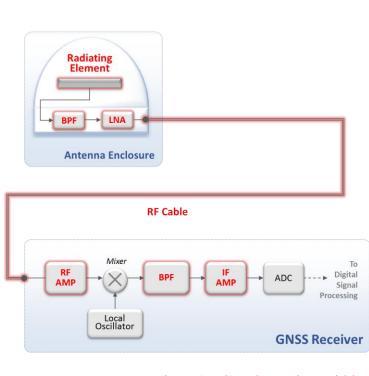
/// 17 Date: November 7th, 2019 Ref: GIANO_ITSF_2019

THALES ALENIA SPACE OPEN

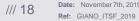
© 2019 Thales Alenia Space

GIANO VALIDATION /// CALIBRATION ASPECTS

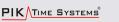
In-factory **calibrated equipment** is subject to **degradation** and needs to be **periodically re-calibrated**. Degradation is caused mainly by:


- Aging of components (i.e. random changes w.r.t. initial operating points)
- Retrace (i.e. steadiness of delay measurements after power-cycles)
- Operating conditions (typically different from calibration laboratory ones)

Calibration is typically performed in two ways:


- **Absolute Calibration**: delays are measured against a simulated test signal with identifiable RF timing marker:
 - O @ Antenna level using a test inject probe antenna
 - After Radiating Element prior to filters and LNA
- **Relative Calibration**: delays are measured against a reference receiver that has been previously calibrated.

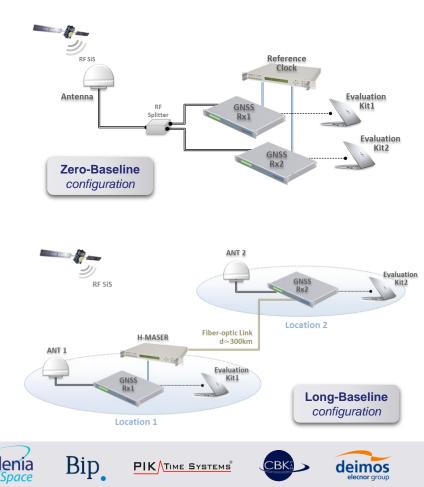
A built-in **Auto-Calibration Technique** will be studied and its feasibility in a commercial product will be investigated for industrialization phase.



* Items in red introduce a substantial delay

GIANO VALIDATION /// TEST STRATEGY

Timing platform will be tested through an **extensive validation test campaign**, conducted in **four phases**, through specific involvement of Team's experts and support of European laboratories:



TAS-I premises (Italy): verification of GIANO **interfaces**, **functionalities** and platform **integration**.

SRC PAS (Poland): **calibration** and **time transfer performance** verification in real environment ("Zero", "Short" or "Long" baseline tests).

TAS-I & **EC** Joint Research Centre - JRC (Italy): verification of platform robustness and ability to withstand Jamming or Spoofing threats.

Italian National Metrology Institute - INRIM (Italy): GIANO performance benchmarking against COTS multi-GNSS calibrated timing receivers and UTC validation at user level.

GIANO VALIDATION /// STANDARDIZATION & CERTIFICATION

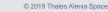
No unique applicable standard to GNSS timing receivers.

Existing standards are more related to data format and I/F:

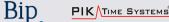
- Standards applicable to data format of high-end receivers, such as the CGGTTS format (BIPM).
- Ubiquitous standard used for timing (PPP) i.e. **RINEX**.
- Receivers used in critical infrastructures generally outputs time coded data in IRIG-B format, with variations for the power grid operators conforming to the old IEEE C37.118 Standard (recently superseded by IEEE Std C37.118.1 and IEEE Std C37.118.2).

Financial transactions conform to recent **MIFID-II** directive.

Timing services **certification** is the **added-value** making service more appealing to users.


An **approach to Certification** of a GNSS timing receiver could consider as a minimum:

- Receiver overall performances assessment under operating conditions (e.g. jamming, spoofing, etc.).
- Calibration by a certified laboratory (and possibly auto-calibration of the receiver during operation).
- Remote monitoring of overall performance may be required by specific applications.



Thanks For Your Attention!

Marco Puccitelli

DSP & Radio Navigation Systems Competence Center Software Solutions Italy

THALES ALENIA SPACE Via E. Mattei 1, 20064 Gorgonzola Milano (Italy)

marco.puccitelli@thalesaleniaspace.com

Date: November 7th, 2019 /// 21 Ref: GIANO ITSF 2019

P

THALES ALENIA SPACE OPEN

© 2019 Thales Alenia Space

